matthieulel commited on
Commit
aa825c6
1 Parent(s): 45e03e5

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-384
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: vit-base-patch16-384-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vit-base-patch16-384-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.5571
24
+ - Accuracy: 0.8591
25
+ - Precision: 0.8571
26
+ - Recall: 0.8591
27
+ - F1: 0.8564
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 128
48
+ - eval_batch_size: 128
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 512
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.5894 | 0.99 | 31 | 1.2732 | 0.5744 | 0.5409 | 0.5744 | 0.5481 |
62
+ | 0.8001 | 1.98 | 62 | 0.6184 | 0.7976 | 0.7934 | 0.7976 | 0.7880 |
63
+ | 0.6895 | 2.98 | 93 | 0.5823 | 0.8067 | 0.7991 | 0.8067 | 0.7955 |
64
+ | 0.6259 | 4.0 | 125 | 0.4910 | 0.8433 | 0.8427 | 0.8433 | 0.8368 |
65
+ | 0.556 | 4.99 | 156 | 0.4874 | 0.8467 | 0.8465 | 0.8467 | 0.8465 |
66
+ | 0.5116 | 5.98 | 187 | 0.4734 | 0.8546 | 0.8569 | 0.8546 | 0.8518 |
67
+ | 0.4877 | 6.98 | 218 | 0.4539 | 0.8461 | 0.8429 | 0.8461 | 0.8428 |
68
+ | 0.4383 | 8.0 | 250 | 0.4716 | 0.8377 | 0.8399 | 0.8377 | 0.8345 |
69
+ | 0.4267 | 8.99 | 281 | 0.4355 | 0.8602 | 0.8576 | 0.8602 | 0.8559 |
70
+ | 0.4022 | 9.98 | 312 | 0.4758 | 0.8377 | 0.8377 | 0.8377 | 0.8356 |
71
+ | 0.3811 | 10.98 | 343 | 0.4538 | 0.8495 | 0.8471 | 0.8495 | 0.8474 |
72
+ | 0.3612 | 12.0 | 375 | 0.4808 | 0.8439 | 0.8412 | 0.8439 | 0.8399 |
73
+ | 0.363 | 12.99 | 406 | 0.4751 | 0.8467 | 0.8502 | 0.8467 | 0.8458 |
74
+ | 0.3198 | 13.98 | 437 | 0.4800 | 0.8489 | 0.8497 | 0.8489 | 0.8450 |
75
+ | 0.3192 | 14.98 | 468 | 0.4834 | 0.8574 | 0.8580 | 0.8574 | 0.8570 |
76
+ | 0.3041 | 16.0 | 500 | 0.4879 | 0.8495 | 0.8500 | 0.8495 | 0.8443 |
77
+ | 0.2607 | 16.99 | 531 | 0.4958 | 0.8540 | 0.8529 | 0.8540 | 0.8523 |
78
+ | 0.2649 | 17.98 | 562 | 0.4927 | 0.8579 | 0.8570 | 0.8579 | 0.8562 |
79
+ | 0.2553 | 18.98 | 593 | 0.5095 | 0.8495 | 0.8473 | 0.8495 | 0.8474 |
80
+ | 0.2453 | 20.0 | 625 | 0.5162 | 0.8495 | 0.8467 | 0.8495 | 0.8467 |
81
+ | 0.2417 | 20.99 | 656 | 0.5375 | 0.8579 | 0.8573 | 0.8579 | 0.8543 |
82
+ | 0.241 | 21.98 | 687 | 0.5129 | 0.8568 | 0.8546 | 0.8568 | 0.8547 |
83
+ | 0.2257 | 22.98 | 718 | 0.5316 | 0.8596 | 0.8584 | 0.8596 | 0.8571 |
84
+ | 0.2087 | 24.0 | 750 | 0.5530 | 0.8512 | 0.8497 | 0.8512 | 0.8489 |
85
+ | 0.2196 | 24.99 | 781 | 0.5422 | 0.8613 | 0.8600 | 0.8613 | 0.8596 |
86
+ | 0.1975 | 25.98 | 812 | 0.5672 | 0.8529 | 0.8534 | 0.8529 | 0.8508 |
87
+ | 0.2135 | 26.98 | 843 | 0.5697 | 0.8523 | 0.8513 | 0.8523 | 0.8509 |
88
+ | 0.1946 | 28.0 | 875 | 0.5598 | 0.8557 | 0.8542 | 0.8557 | 0.8536 |
89
+ | 0.2006 | 28.99 | 906 | 0.5582 | 0.8591 | 0.8566 | 0.8591 | 0.8560 |
90
+ | 0.1968 | 29.76 | 930 | 0.5571 | 0.8591 | 0.8571 | 0.8591 | 0.8564 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1b69db33cfe08dc4027ce2fc16f999db02a279d3d27baacb7d2a262e239841b4
3
  size 344415944
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7435626439fe94a4b13841160136644c7646c0206d9117c7711292490556416b
3
  size 344415944