File size: 9,923 Bytes
378349e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
language:
- en
license: cc-by-sa-4.0
tags:
- causal-lm
datasets:
- tiiuae/falcon-refinedweb
- togethercomputer/RedPajama-Data-1T
- CarperAI/pilev2-dev
- bigcode/starcoderdata
- allenai/peS2o
model-index:
- name: stablelm-3b-4e1t
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 46.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-3b-4e1t
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 75.94
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-3b-4e1t
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.23
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-3b-4e1t
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.2
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-3b-4e1t
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-3b-4e1t
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 3.34
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-3b-4e1t
name: Open LLM Leaderboard
---
# `StableLM-3B-4E1T`
## Model Description
`StableLM-3B-4E1T` is a 3 billion parameter decoder-only language model pre-trained on 1 trillion tokens of diverse English and code datasets for 4 epochs.
## Usage
Get started generating text with `StableLM-3B-4E1T` by using the following code snippet:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
model = AutoModelForCausalLM.from_pretrained(
"stabilityai/stablelm-3b-4e1t",
torch_dtype="auto",
)
model.cuda()
inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to(model.device)
tokens = model.generate(
**inputs,
max_new_tokens=64,
temperature=0.75,
top_p=0.95,
do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```
### Run with Flash Attention 2 ⚡️
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
model = AutoModelForCausalLM.from_pretrained(
"stabilityai/stablelm-3b-4e1t",
torch_dtype="auto",
attn_implementation="flash_attention_2",
)
model.cuda()
inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to(model.device)
tokens = model.generate(
**inputs,
max_new_tokens=64,
temperature=0.75,
top_p=0.95,
do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```
</details>
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM-3B-4E1T` models are auto-regressive language models based on the transformer decoder architecture.
* **Language(s)**: English
* **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
* **License**: Model checkpoints are licensed under the Creative Commons license ([CC BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/)). Under this license, you must give [credit](https://creativecommons.org/licenses/by/4.0/#) to Stability AI, provide a link to the license, and [indicate if changes were made](https://creativecommons.org/licenses/by/4.0/#). You may do so in any reasonable manner, but not in any way that suggests the Stability AI endorses you or your use.
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`
### Model Architecture
The model is a decoder-only transformer similar to the LLaMA ([Touvron et al., 2023](https://arxiv.org/abs/2307.09288)) architecture with the following modifications:
| Parameters | Hidden Size | Layers | Heads | Sequence Length |
|----------------|-------------|--------|-------|-----------------|
| 2,795,443,200 | 2560 | 32 | 32 | 4096 |
* **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf).
* **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) with learned bias terms as opposed to RMSNorm ([Zhang & Sennrich, 2019](https://arxiv.org/abs/1910.07467)).
* **Tokenizer**: GPT-NeoX ([Black et al., 2022](https://arxiv.org/abs/2204.06745)).
## Training
For complete dataset and training details, please see the [StableLM-3B-4E1T Technical Report](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo).
### Training Dataset
The dataset is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), RedPajama-Data ([Together Computer., 2023](https://github.com/togethercomputer/RedPajama-Data)) and The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)) both without the *Books3* subset, and StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)).
* Given the large amount of web data, we recommend fine-tuning the base StableLM-3B-4E1T for your downstream tasks.
### Training Procedure
The model is pre-trained on the aforementioned datasets in `bfloat16` precision, optimized with AdamW, and trained using the NeoX tokenizer with a vocabulary size of 50,257. We outline the complete hyperparameters choices in the project's [GitHub repository - config](https://github.com/Stability-AI/StableLM/blob/main/configs/stablelm-3b-4e1t.yml).
### Training Infrastructure
* **Hardware**: `StableLM-3B-4E1T` was trained on the Stability AI cluster across 256 NVIDIA A100 40GB GPUs (AWS P4d instances). Training began on August 23, 2023, and took approximately 30 days to complete.
* **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf))
## Use and Limitations
### Intended Use
The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications.
### Limitations and Bias
As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
## How to Cite
```bibtex
@misc{StableLM-3B-4E1T,
url={[https://huggingface.co/stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)},
title={StableLM 3B 4E1T},
author={Tow, Jonathan and Bellagente, Marco and Mahan, Dakota and Riquelme, Carlos}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-3b-4e1t)
| Metric |Value|
|---------------------------------|----:|
|Avg. |46.58|
|AI2 Reasoning Challenge (25-Shot)|46.59|
|HellaSwag (10-Shot) |75.94|
|MMLU (5-Shot) |45.23|
|TruthfulQA (0-shot) |37.20|
|Winogrande (5-shot) |71.19|
|GSM8k (5-shot) | 3.34|
|