--- tags: - merge - mergekit - lazymergekit - CultriX/NeuralTrix-7B-dpo - paulml/DPOB-INMTOB-7B base_model: - CultriX/NeuralTrix-7B-dpo - paulml/DPOB-INMTOB-7B --- # djinn djinn is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) * [paulml/DPOB-INMTOB-7B](https://huggingface.co/paulml/DPOB-INMTOB-7B) ## 🧩 Configuration ```yaml merge_method: linear parameters: weight: 1.0 slices: - sources: - model: CultriX/NeuralTrix-7B-dpo # embed_tokens comes along with the ride with whatever is the first layer layer_range: [0, 1] - model: paulml/DPOB-INMTOB-7B # add dummy second model with 0 weight so tokenizer-based merge routine is invoked for embed_tokens layer_range: [0, 1] parameters: weight: 0 - sources: - model: cognitivecomputations/dolphin-2.1-mistral-7b layer_range: [0, 8] - sources: - model: bardsai/jaskier-7b-dpo-v5.6 layer_range: [8, 16] - sources: - model: paulml/OGNO-7B layer_range: [16, 24] - sources: - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B layer_range: [24, 31] - sources: # same as above, but for lm_head with the last layer - model: CultriX/NeuralTrix-7B-dpo layer_range: [31, 32] - model: paulml/DPOB-INMTOB-7B layer_range: [31, 32] parameters: weight: 0 dtype: float16 tokenizer_source: model:cognitivecomputations/dolphin-2.1-mistral-7b ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/djinn" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```