File size: 1,929 Bytes
e6acc26
 
1bb0cb1
e6acc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33ee415
e6acc26
 
 
 
33ee415
e6acc26
 
 
 
 
 
 
1bb0cb1
e6acc26
33ee415
 
 
e6acc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33ee415
e6acc26
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: mayssakorbi/whisper-tiny-ar2
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: whisper-tiny-ar2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_1
      type: common_voice_16_1
      config: ar
      split: test[1000:1500]
      args: ar
    metrics:
    - name: Wer
      type: wer
      value: 87.11256117455139
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-tiny-ar2

This model is a fine-tuned version of [mayssakorbi/whisper-tiny-ar2](https://huggingface.co/mayssakorbi/whisper-tiny-ar2) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9240
- Wer Ortho: 77.8656
- Wer: 87.1126

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 10
- training_steps: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.5216        | 0.4   | 50   | 0.9240          | 77.8656   | 87.1126 |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1