--- language: - ko library_name: transformers pipeline_tag: text-generation license: cc-by-nc-4.0 --- # **Synatra-V0.1-7B** ## Model Details **Base Model** [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) **Trained On** A6000 48GB * 8 ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. Plus, It is strongly recommended to add a space at the end of the prompt. E.g. ``` text = "[INST] 아이작 뉴턴의 업적을 알려줘. [/INST] " ``` # **Model Benchmark** Preparing... # Implementation Code Since, chat_template already contains insturction format above. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-V0.1-7B") tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-V0.1-7B") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` > Readme format: [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) ---