--- base_model: - cognitivecomputations/TinyDolphin-2.8-1.1b - mbahrsnc/groot-1b tags: - merge - mergekit - lazymergekit - cognitivecomputations/TinyDolphin-2.8-1.1b - mbahrsnc/groot-1b --- # mini-mcqueen mini-mcqueen is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [cognitivecomputations/TinyDolphin-2.8-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8-1.1b) * [mbahrsnc/groot-1b](https://huggingface.co/mbahrsnc/groot-1b) ## 🧩 Configuration ```yaml slices: - sources: - model: cognitivecomputations/TinyDolphin-2.8-1.1b layer_range: [0, 21] output_weight: 0.4 - model: mbahrsnc/groot-1b layer_range: [0, 21] output_weight: 0.6 merge_method: slerp base_model: mbahrsnc/groot-1b parameters: t: - filter: self_attn value: [0, 0.75, 0.5, 0.85, 1] - filter: mlp value: [1, 0.75, 0.85, 0.5, 0.25] - value: 0.75 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mbahrsnc/mini-mcqueen" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```