--- base_model: - TinyLlama/TinyLlama-1.1B-Chat-v1.0 - squeeze-ai-lab/TinyAgent-1.1B tags: - merge - mergekit - lazymergekit - TinyLlama/TinyLlama-1.1B-Chat-v1.0 - squeeze-ai-lab/TinyAgent-1.1B --- # tiny-frankenstein tiny-frankenstein is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) * [squeeze-ai-lab/TinyAgent-1.1B](https://huggingface.co/squeeze-ai-lab/TinyAgent-1.1B) ## 🧩 Configuration ```yaml slices: - sources: - model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 layer_range: [0, 21] - sources: - model: squeeze-ai-lab/TinyAgent-1.1B layer_range: [14, 21] merge_method: passthrough dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mbahrsnc/tiny-frankenstein" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```