Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 9,174 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule

from ..builder import HEADS
from ..utils import SelfAttentionBlock as _SelfAttentionBlock
from .decode_head import BaseDecodeHead


class PPMConcat(nn.ModuleList):
    """Pyramid Pooling Module that only concat the features of each layer.

    Args:
        pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module.
    """

    def __init__(self, pool_scales=(1, 3, 6, 8)):
        super(PPMConcat, self).__init__(
            [nn.AdaptiveAvgPool2d(pool_scale) for pool_scale in pool_scales])

    def forward(self, feats):
        """Forward function."""
        ppm_outs = []
        for ppm in self:
            ppm_out = ppm(feats)
            ppm_outs.append(ppm_out.view(*feats.shape[:2], -1))
        concat_outs = torch.cat(ppm_outs, dim=2)
        return concat_outs


class SelfAttentionBlock(_SelfAttentionBlock):
    """Make a ANN used SelfAttentionBlock.

    Args:
        low_in_channels (int): Input channels of lower level feature,
            which is the key feature for self-attention.
        high_in_channels (int): Input channels of higher level feature,
            which is the query feature for self-attention.
        channels (int): Output channels of key/query transform.
        out_channels (int): Output channels.
        share_key_query (bool): Whether share projection weight between key
            and query projection.
        query_scale (int): The scale of query feature map.
        key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module of key feature.
        conv_cfg (dict|None): Config of conv layers.
        norm_cfg (dict|None): Config of norm layers.
        act_cfg (dict|None): Config of activation layers.
    """

    def __init__(self, low_in_channels, high_in_channels, channels,
                 out_channels, share_key_query, query_scale, key_pool_scales,
                 conv_cfg, norm_cfg, act_cfg):
        key_psp = PPMConcat(key_pool_scales)
        if query_scale > 1:
            query_downsample = nn.MaxPool2d(kernel_size=query_scale)
        else:
            query_downsample = None
        super(SelfAttentionBlock, self).__init__(
            key_in_channels=low_in_channels,
            query_in_channels=high_in_channels,
            channels=channels,
            out_channels=out_channels,
            share_key_query=share_key_query,
            query_downsample=query_downsample,
            key_downsample=key_psp,
            key_query_num_convs=1,
            key_query_norm=True,
            value_out_num_convs=1,
            value_out_norm=False,
            matmul_norm=True,
            with_out=True,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)


class AFNB(nn.Module):
    """Asymmetric Fusion Non-local Block(AFNB)

    Args:
        low_in_channels (int): Input channels of lower level feature,
            which is the key feature for self-attention.
        high_in_channels (int): Input channels of higher level feature,
            which is the query feature for self-attention.
        channels (int): Output channels of key/query transform.
        out_channels (int): Output channels.
            and query projection.
        query_scales (tuple[int]): The scales of query feature map.
            Default: (1,)
        key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module of key feature.
        conv_cfg (dict|None): Config of conv layers.
        norm_cfg (dict|None): Config of norm layers.
        act_cfg (dict|None): Config of activation layers.
    """

    def __init__(self, low_in_channels, high_in_channels, channels,
                 out_channels, query_scales, key_pool_scales, conv_cfg,
                 norm_cfg, act_cfg):
        super(AFNB, self).__init__()
        self.stages = nn.ModuleList()
        for query_scale in query_scales:
            self.stages.append(
                SelfAttentionBlock(
                    low_in_channels=low_in_channels,
                    high_in_channels=high_in_channels,
                    channels=channels,
                    out_channels=out_channels,
                    share_key_query=False,
                    query_scale=query_scale,
                    key_pool_scales=key_pool_scales,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg))
        self.bottleneck = ConvModule(
            out_channels + high_in_channels,
            out_channels,
            1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=None)

    def forward(self, low_feats, high_feats):
        """Forward function."""
        priors = [stage(high_feats, low_feats) for stage in self.stages]
        context = torch.stack(priors, dim=0).sum(dim=0)
        output = self.bottleneck(torch.cat([context, high_feats], 1))
        return output


class APNB(nn.Module):
    """Asymmetric Pyramid Non-local Block (APNB)

    Args:
        in_channels (int): Input channels of key/query feature,
            which is the key feature for self-attention.
        channels (int): Output channels of key/query transform.
        out_channels (int): Output channels.
        query_scales (tuple[int]): The scales of query feature map.
            Default: (1,)
        key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module of key feature.
        conv_cfg (dict|None): Config of conv layers.
        norm_cfg (dict|None): Config of norm layers.
        act_cfg (dict|None): Config of activation layers.
    """

    def __init__(self, in_channels, channels, out_channels, query_scales,
                 key_pool_scales, conv_cfg, norm_cfg, act_cfg):
        super(APNB, self).__init__()
        self.stages = nn.ModuleList()
        for query_scale in query_scales:
            self.stages.append(
                SelfAttentionBlock(
                    low_in_channels=in_channels,
                    high_in_channels=in_channels,
                    channels=channels,
                    out_channels=out_channels,
                    share_key_query=True,
                    query_scale=query_scale,
                    key_pool_scales=key_pool_scales,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg))
        self.bottleneck = ConvModule(
            2 * in_channels,
            out_channels,
            1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)

    def forward(self, feats):
        """Forward function."""
        priors = [stage(feats, feats) for stage in self.stages]
        context = torch.stack(priors, dim=0).sum(dim=0)
        output = self.bottleneck(torch.cat([context, feats], 1))
        return output


@HEADS.register_module()
class ANNHead(BaseDecodeHead):
    """Asymmetric Non-local Neural Networks for Semantic Segmentation.

    This head is the implementation of `ANNNet
    <https://arxiv.org/abs/1908.07678>`_.

    Args:
        project_channels (int): Projection channels for Nonlocal.
        query_scales (tuple[int]): The scales of query feature map.
            Default: (1,)
        key_pool_scales (tuple[int]): The pooling scales of key feature map.
            Default: (1, 3, 6, 8).
    """

    def __init__(self,
                 project_channels,
                 query_scales=(1, ),
                 key_pool_scales=(1, 3, 6, 8),
                 **kwargs):
        super(ANNHead, self).__init__(
            input_transform='multiple_select', **kwargs)
        assert len(self.in_channels) == 2
        low_in_channels, high_in_channels = self.in_channels
        self.project_channels = project_channels
        self.fusion = AFNB(
            low_in_channels=low_in_channels,
            high_in_channels=high_in_channels,
            out_channels=high_in_channels,
            channels=project_channels,
            query_scales=query_scales,
            key_pool_scales=key_pool_scales,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.bottleneck = ConvModule(
            high_in_channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.context = APNB(
            in_channels=self.channels,
            out_channels=self.channels,
            channels=project_channels,
            query_scales=query_scales,
            key_pool_scales=key_pool_scales,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def forward(self, inputs):
        """Forward function."""
        low_feats, high_feats = self._transform_inputs(inputs)
        output = self.fusion(low_feats, high_feats)
        output = self.dropout(output)
        output = self.bottleneck(output)
        output = self.context(output)
        output = self.cls_seg(output)

        return output