File size: 9,174 Bytes
b13b124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from ..builder import HEADS
from ..utils import SelfAttentionBlock as _SelfAttentionBlock
from .decode_head import BaseDecodeHead
class PPMConcat(nn.ModuleList):
"""Pyramid Pooling Module that only concat the features of each layer.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
"""
def __init__(self, pool_scales=(1, 3, 6, 8)):
super(PPMConcat, self).__init__(
[nn.AdaptiveAvgPool2d(pool_scale) for pool_scale in pool_scales])
def forward(self, feats):
"""Forward function."""
ppm_outs = []
for ppm in self:
ppm_out = ppm(feats)
ppm_outs.append(ppm_out.view(*feats.shape[:2], -1))
concat_outs = torch.cat(ppm_outs, dim=2)
return concat_outs
class SelfAttentionBlock(_SelfAttentionBlock):
"""Make a ANN used SelfAttentionBlock.
Args:
low_in_channels (int): Input channels of lower level feature,
which is the key feature for self-attention.
high_in_channels (int): Input channels of higher level feature,
which is the query feature for self-attention.
channels (int): Output channels of key/query transform.
out_channels (int): Output channels.
share_key_query (bool): Whether share projection weight between key
and query projection.
query_scale (int): The scale of query feature map.
key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module of key feature.
conv_cfg (dict|None): Config of conv layers.
norm_cfg (dict|None): Config of norm layers.
act_cfg (dict|None): Config of activation layers.
"""
def __init__(self, low_in_channels, high_in_channels, channels,
out_channels, share_key_query, query_scale, key_pool_scales,
conv_cfg, norm_cfg, act_cfg):
key_psp = PPMConcat(key_pool_scales)
if query_scale > 1:
query_downsample = nn.MaxPool2d(kernel_size=query_scale)
else:
query_downsample = None
super(SelfAttentionBlock, self).__init__(
key_in_channels=low_in_channels,
query_in_channels=high_in_channels,
channels=channels,
out_channels=out_channels,
share_key_query=share_key_query,
query_downsample=query_downsample,
key_downsample=key_psp,
key_query_num_convs=1,
key_query_norm=True,
value_out_num_convs=1,
value_out_norm=False,
matmul_norm=True,
with_out=True,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
class AFNB(nn.Module):
"""Asymmetric Fusion Non-local Block(AFNB)
Args:
low_in_channels (int): Input channels of lower level feature,
which is the key feature for self-attention.
high_in_channels (int): Input channels of higher level feature,
which is the query feature for self-attention.
channels (int): Output channels of key/query transform.
out_channels (int): Output channels.
and query projection.
query_scales (tuple[int]): The scales of query feature map.
Default: (1,)
key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module of key feature.
conv_cfg (dict|None): Config of conv layers.
norm_cfg (dict|None): Config of norm layers.
act_cfg (dict|None): Config of activation layers.
"""
def __init__(self, low_in_channels, high_in_channels, channels,
out_channels, query_scales, key_pool_scales, conv_cfg,
norm_cfg, act_cfg):
super(AFNB, self).__init__()
self.stages = nn.ModuleList()
for query_scale in query_scales:
self.stages.append(
SelfAttentionBlock(
low_in_channels=low_in_channels,
high_in_channels=high_in_channels,
channels=channels,
out_channels=out_channels,
share_key_query=False,
query_scale=query_scale,
key_pool_scales=key_pool_scales,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.bottleneck = ConvModule(
out_channels + high_in_channels,
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
def forward(self, low_feats, high_feats):
"""Forward function."""
priors = [stage(high_feats, low_feats) for stage in self.stages]
context = torch.stack(priors, dim=0).sum(dim=0)
output = self.bottleneck(torch.cat([context, high_feats], 1))
return output
class APNB(nn.Module):
"""Asymmetric Pyramid Non-local Block (APNB)
Args:
in_channels (int): Input channels of key/query feature,
which is the key feature for self-attention.
channels (int): Output channels of key/query transform.
out_channels (int): Output channels.
query_scales (tuple[int]): The scales of query feature map.
Default: (1,)
key_pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module of key feature.
conv_cfg (dict|None): Config of conv layers.
norm_cfg (dict|None): Config of norm layers.
act_cfg (dict|None): Config of activation layers.
"""
def __init__(self, in_channels, channels, out_channels, query_scales,
key_pool_scales, conv_cfg, norm_cfg, act_cfg):
super(APNB, self).__init__()
self.stages = nn.ModuleList()
for query_scale in query_scales:
self.stages.append(
SelfAttentionBlock(
low_in_channels=in_channels,
high_in_channels=in_channels,
channels=channels,
out_channels=out_channels,
share_key_query=True,
query_scale=query_scale,
key_pool_scales=key_pool_scales,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.bottleneck = ConvModule(
2 * in_channels,
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, feats):
"""Forward function."""
priors = [stage(feats, feats) for stage in self.stages]
context = torch.stack(priors, dim=0).sum(dim=0)
output = self.bottleneck(torch.cat([context, feats], 1))
return output
@HEADS.register_module()
class ANNHead(BaseDecodeHead):
"""Asymmetric Non-local Neural Networks for Semantic Segmentation.
This head is the implementation of `ANNNet
<https://arxiv.org/abs/1908.07678>`_.
Args:
project_channels (int): Projection channels for Nonlocal.
query_scales (tuple[int]): The scales of query feature map.
Default: (1,)
key_pool_scales (tuple[int]): The pooling scales of key feature map.
Default: (1, 3, 6, 8).
"""
def __init__(self,
project_channels,
query_scales=(1, ),
key_pool_scales=(1, 3, 6, 8),
**kwargs):
super(ANNHead, self).__init__(
input_transform='multiple_select', **kwargs)
assert len(self.in_channels) == 2
low_in_channels, high_in_channels = self.in_channels
self.project_channels = project_channels
self.fusion = AFNB(
low_in_channels=low_in_channels,
high_in_channels=high_in_channels,
out_channels=high_in_channels,
channels=project_channels,
query_scales=query_scales,
key_pool_scales=key_pool_scales,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.bottleneck = ConvModule(
high_in_channels,
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.context = APNB(
in_channels=self.channels,
out_channels=self.channels,
channels=project_channels,
query_scales=query_scales,
key_pool_scales=key_pool_scales,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def forward(self, inputs):
"""Forward function."""
low_feats, high_feats = self._transform_inputs(inputs)
output = self.fusion(low_feats, high_feats)
output = self.dropout(output)
output = self.bottleneck(output)
output = self.context(output)
output = self.cls_seg(output)
return output
|