Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 5,545 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn.functional as F
from mmcv.cnn import ConvModule, Scale
from torch import nn

from mmseg.core import add_prefix
from ..builder import HEADS
from ..utils import SelfAttentionBlock as _SelfAttentionBlock
from .decode_head import BaseDecodeHead


class PAM(_SelfAttentionBlock):
    """Position Attention Module (PAM)

    Args:
        in_channels (int): Input channels of key/query feature.
        channels (int): Output channels of key/query transform.
    """

    def __init__(self, in_channels, channels):
        super(PAM, self).__init__(
            key_in_channels=in_channels,
            query_in_channels=in_channels,
            channels=channels,
            out_channels=in_channels,
            share_key_query=False,
            query_downsample=None,
            key_downsample=None,
            key_query_num_convs=1,
            key_query_norm=False,
            value_out_num_convs=1,
            value_out_norm=False,
            matmul_norm=False,
            with_out=False,
            conv_cfg=None,
            norm_cfg=None,
            act_cfg=None)

        self.gamma = Scale(0)

    def forward(self, x):
        """Forward function."""
        out = super(PAM, self).forward(x, x)

        out = self.gamma(out) + x
        return out


class CAM(nn.Module):
    """Channel Attention Module (CAM)"""

    def __init__(self):
        super(CAM, self).__init__()
        self.gamma = Scale(0)

    def forward(self, x):
        """Forward function."""
        batch_size, channels, height, width = x.size()
        proj_query = x.view(batch_size, channels, -1)
        proj_key = x.view(batch_size, channels, -1).permute(0, 2, 1)
        energy = torch.bmm(proj_query, proj_key)
        energy_new = torch.max(
            energy, -1, keepdim=True)[0].expand_as(energy) - energy
        attention = F.softmax(energy_new, dim=-1)
        proj_value = x.view(batch_size, channels, -1)

        out = torch.bmm(attention, proj_value)
        out = out.view(batch_size, channels, height, width)

        out = self.gamma(out) + x
        return out


@HEADS.register_module()
class DAHead(BaseDecodeHead):
    """Dual Attention Network for Scene Segmentation.

    This head is the implementation of `DANet
    <https://arxiv.org/abs/1809.02983>`_.

    Args:
        pam_channels (int): The channels of Position Attention Module(PAM).
    """

    def __init__(self, pam_channels, **kwargs):
        super(DAHead, self).__init__(**kwargs)
        self.pam_channels = pam_channels
        self.pam_in_conv = ConvModule(
            self.in_channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.pam = PAM(self.channels, pam_channels)
        self.pam_out_conv = ConvModule(
            self.channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.pam_conv_seg = nn.Conv2d(
            self.channels, self.num_classes, kernel_size=1)

        self.cam_in_conv = ConvModule(
            self.in_channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.cam = CAM()
        self.cam_out_conv = ConvModule(
            self.channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.cam_conv_seg = nn.Conv2d(
            self.channels, self.num_classes, kernel_size=1)

    def pam_cls_seg(self, feat):
        """PAM feature classification."""
        if self.dropout is not None:
            feat = self.dropout(feat)
        output = self.pam_conv_seg(feat)
        return output

    def cam_cls_seg(self, feat):
        """CAM feature classification."""
        if self.dropout is not None:
            feat = self.dropout(feat)
        output = self.cam_conv_seg(feat)
        return output

    def forward(self, inputs):
        """Forward function."""
        x = self._transform_inputs(inputs)
        pam_feat = self.pam_in_conv(x)
        pam_feat = self.pam(pam_feat)
        pam_feat = self.pam_out_conv(pam_feat)
        pam_out = self.pam_cls_seg(pam_feat)

        cam_feat = self.cam_in_conv(x)
        cam_feat = self.cam(cam_feat)
        cam_feat = self.cam_out_conv(cam_feat)
        cam_out = self.cam_cls_seg(cam_feat)

        feat_sum = pam_feat + cam_feat
        pam_cam_out = self.cls_seg(feat_sum)

        return pam_cam_out, pam_out, cam_out

    def forward_test(self, inputs, img_metas, test_cfg):
        """Forward function for testing, only ``pam_cam`` is used."""
        return self.forward(inputs)[0]

    def losses(self, seg_logit, seg_label):
        """Compute ``pam_cam``, ``pam``, ``cam`` loss."""
        pam_cam_seg_logit, pam_seg_logit, cam_seg_logit = seg_logit
        loss = dict()
        loss.update(
            add_prefix(
                super(DAHead, self).losses(pam_cam_seg_logit, seg_label),
                'pam_cam'))
        loss.update(
            add_prefix(
                super(DAHead, self).losses(pam_seg_logit, seg_label), 'pam'))
        loss.update(
            add_prefix(
                super(DAHead, self).losses(cam_seg_logit, seg_label), 'cam'))
        return loss