Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
mccaly's picture
Upload 660 files
b13b124
import torch
from mmcv.cnn import ContextBlock
from ..builder import HEADS
from .fcn_head import FCNHead
@HEADS.register_module()
class GCHead(FCNHead):
"""GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond.
This head is the implementation of `GCNet
<https://arxiv.org/abs/1904.11492>`_.
Args:
ratio (float): Multiplier of channels ratio. Default: 1/4.
pooling_type (str): The pooling type of context aggregation.
Options are 'att', 'avg'. Default: 'avg'.
fusion_types (tuple[str]): The fusion type for feature fusion.
Options are 'channel_add', 'channel_mul'. Defautl: ('channel_add',)
"""
def __init__(self,
ratio=1 / 4.,
pooling_type='att',
fusion_types=('channel_add', ),
**kwargs):
super(GCHead, self).__init__(num_convs=2, **kwargs)
self.ratio = ratio
self.pooling_type = pooling_type
self.fusion_types = fusion_types
self.gc_block = ContextBlock(
in_channels=self.channels,
ratio=self.ratio,
pooling_type=self.pooling_type,
fusion_types=self.fusion_types)
def forward(self, inputs):
"""Forward function."""
x = self._transform_inputs(inputs)
output = self.convs[0](x)
output = self.gc_block(output)
output = self.convs[1](output)
if self.concat_input:
output = self.conv_cat(torch.cat([x, output], dim=1))
output = self.cls_seg(output)
return output