Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
mccaly's picture
Upload 660 files
b13b124
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
import math
import logging
_logger = logging.getLogger(__name__)
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True, pos_embed_interp=False, num_patches=576, align_corners=False):
if cfg is None:
cfg = getattr(model, 'default_cfg')
if cfg is None or 'url' not in cfg or not cfg['url']:
_logger.warning("Pretrained model URL is invalid, using random initialization.")
return
if 'pretrained_finetune' in cfg and cfg['pretrained_finetune']:
state_dict = torch.load(cfg['pretrained_finetune'])
print('load pre-trained weight from ' + cfg['pretrained_finetune'])
else:
state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu')
print('load pre-trained weight from imagenet21k')
if filter_fn is not None:
state_dict = filter_fn(state_dict)
if in_chans == 1:
conv1_name = cfg['first_conv']
_logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name)
conv1_weight = state_dict[conv1_name + '.weight']
# Some weights are in torch.half, ensure it's float for sum on CPU
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I > 3:
assert conv1_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K)
conv1_weight = conv1_weight.sum(dim=2, keepdim=False)
else:
conv1_weight = conv1_weight.sum(dim=1, keepdim=True)
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + '.weight'] = conv1_weight
elif in_chans != 3:
conv1_name = cfg['first_conv']
conv1_weight = state_dict[conv1_name + '.weight']
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I == 3:
_logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name)
del state_dict[conv1_name + '.weight']
strict = False
else:
# NOTE this strategy should be better than random init, but there could be other combinations of
# the original RGB input layer weights that'd work better for specific cases.
_logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name)
repeat = int(math.ceil(in_chans / 3))
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv1_weight *= (3 / float(in_chans))
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + '.weight'] = conv1_weight
classifier_name = cfg['classifier']
if num_classes == 1000 and cfg['num_classes'] == 1001:
# special case for imagenet trained models with extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + '.weight']
state_dict[classifier_name + '.weight'] = classifier_weight[1:]
classifier_bias = state_dict[classifier_name + '.bias']
state_dict[classifier_name + '.bias'] = classifier_bias[1:]
elif num_classes != cfg['num_classes']:
# completely discard fully connected for all other differences between pretrained and created model
del state_dict[classifier_name + '.weight']
del state_dict[classifier_name + '.bias']
strict = False
if pos_embed_interp:
pos_embed_weight = state_dict['pos_embed'][:,1:]
pos_embed_weight = pos_embed_weight.transpose(1,2)
n, c, hw = pos_embed_weight.shape
h = w = int(math.sqrt(hw))
pos_embed_weight = pos_embed_weight.view(n,c,h,w)
pos_embed_weight = F.interpolate(pos_embed_weight, size=int(math.sqrt(num_patches)), mode='bilinear', align_corners=align_corners)
pos_embed_weight = pos_embed_weight.view(n,c,-1).transpose(1,2)
cls_token_weight = state_dict['pos_embed'][:,0].unsqueeze(1)
state_dict['pos_embed'] = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
model.load_state_dict(state_dict, strict=strict)