|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class Encoding(nn.Module): |
|
"""Encoding Layer: a learnable residual encoder. |
|
|
|
Input is of shape (batch_size, channels, height, width). |
|
Output is of shape (batch_size, num_codes, channels). |
|
|
|
Args: |
|
channels: dimension of the features or feature channels |
|
num_codes: number of code words |
|
""" |
|
|
|
def __init__(self, channels, num_codes): |
|
super(Encoding, self).__init__() |
|
|
|
self.channels, self.num_codes = channels, num_codes |
|
std = 1. / ((num_codes * channels)**0.5) |
|
|
|
self.codewords = nn.Parameter( |
|
torch.empty(num_codes, channels, |
|
dtype=torch.float).uniform_(-std, std), |
|
requires_grad=True) |
|
|
|
self.scale = nn.Parameter( |
|
torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0), |
|
requires_grad=True) |
|
|
|
@staticmethod |
|
def scaled_l2(x, codewords, scale): |
|
num_codes, channels = codewords.size() |
|
batch_size = x.size(0) |
|
reshaped_scale = scale.view((1, 1, num_codes)) |
|
expanded_x = x.unsqueeze(2).expand( |
|
(batch_size, x.size(1), num_codes, channels)) |
|
reshaped_codewords = codewords.view((1, 1, num_codes, channels)) |
|
|
|
scaled_l2_norm = reshaped_scale * ( |
|
expanded_x - reshaped_codewords).pow(2).sum(dim=3) |
|
return scaled_l2_norm |
|
|
|
@staticmethod |
|
def aggregate(assigment_weights, x, codewords): |
|
num_codes, channels = codewords.size() |
|
reshaped_codewords = codewords.view((1, 1, num_codes, channels)) |
|
batch_size = x.size(0) |
|
|
|
expanded_x = x.unsqueeze(2).expand( |
|
(batch_size, x.size(1), num_codes, channels)) |
|
encoded_feat = (assigment_weights.unsqueeze(3) * |
|
(expanded_x - reshaped_codewords)).sum(dim=1) |
|
return encoded_feat |
|
|
|
def forward(self, x): |
|
assert x.dim() == 4 and x.size(1) == self.channels |
|
|
|
batch_size = x.size(0) |
|
|
|
x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous() |
|
|
|
assigment_weights = F.softmax( |
|
self.scaled_l2(x, self.codewords, self.scale), dim=2) |
|
|
|
encoded_feat = self.aggregate(assigment_weights, x, self.codewords) |
|
return encoded_feat |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(Nx{self.channels}xHxW =>Nx{self.num_codes}' \ |
|
f'x{self.channels})' |
|
return repr_str |
|
|