File size: 2,889 Bytes
c436580 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- lb
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper tiny LB - AKABI
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
config: lb_lu
split: test
args: lb_lu
metrics:
- name: Wer
type: wer
value: 60.18671593892832
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper tiny LB - AKABI
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the google/fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4215
- Wer Ortho: 62.8649
- Wer: 60.1867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.9979 | 1.37 | 250 | 1.5394 | 73.1448 | 73.3298 |
| 0.6784 | 2.75 | 500 | 1.2998 | 66.9095 | 64.8060 |
| 0.3773 | 4.12 | 750 | 1.2317 | 63.9250 | 61.5385 |
| 0.2906 | 5.49 | 1000 | 1.2117 | 63.0759 | 60.3958 |
| 0.2052 | 6.87 | 1250 | 1.2157 | 64.1913 | 62.0685 |
| 0.1155 | 8.24 | 1500 | 1.2432 | 61.6791 | 59.6130 |
| 0.0912 | 9.62 | 1750 | 1.2684 | 63.0056 | 60.3229 |
| 0.0698 | 10.99 | 2000 | 1.2937 | 63.6788 | 60.9598 |
| 0.0396 | 12.36 | 2250 | 1.3224 | 62.7996 | 60.2451 |
| 0.0309 | 13.74 | 2500 | 1.3480 | 62.1514 | 59.4622 |
| 0.0205 | 15.11 | 2750 | 1.3696 | 62.1715 | 59.5303 |
| 0.017 | 16.48 | 3000 | 1.3895 | 62.0761 | 59.8074 |
| 0.0151 | 17.86 | 3250 | 1.4016 | 62.7745 | 60.0360 |
| 0.0125 | 19.23 | 3500 | 1.4126 | 62.8900 | 60.5952 |
| 0.012 | 20.6 | 3750 | 1.4202 | 63.0709 | 60.3909 |
| 0.0115 | 21.98 | 4000 | 1.4215 | 62.8649 | 60.1867 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|