--- language: - lb license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper tiny LB - AKABI results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: lb_lu split: test args: lb_lu metrics: - name: Wer type: wer value: 60.18671593892832 --- # Whisper tiny LB - AKABI This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.4215 - Wer Ortho: 62.8649 - Wer: 60.1867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.9979 | 1.37 | 250 | 1.5394 | 73.1448 | 73.3298 | | 0.6784 | 2.75 | 500 | 1.2998 | 66.9095 | 64.8060 | | 0.3773 | 4.12 | 750 | 1.2317 | 63.9250 | 61.5385 | | 0.2906 | 5.49 | 1000 | 1.2117 | 63.0759 | 60.3958 | | 0.2052 | 6.87 | 1250 | 1.2157 | 64.1913 | 62.0685 | | 0.1155 | 8.24 | 1500 | 1.2432 | 61.6791 | 59.6130 | | 0.0912 | 9.62 | 1750 | 1.2684 | 63.0056 | 60.3229 | | 0.0698 | 10.99 | 2000 | 1.2937 | 63.6788 | 60.9598 | | 0.0396 | 12.36 | 2250 | 1.3224 | 62.7996 | 60.2451 | | 0.0309 | 13.74 | 2500 | 1.3480 | 62.1514 | 59.4622 | | 0.0205 | 15.11 | 2750 | 1.3696 | 62.1715 | 59.5303 | | 0.017 | 16.48 | 3000 | 1.3895 | 62.0761 | 59.8074 | | 0.0151 | 17.86 | 3250 | 1.4016 | 62.7745 | 60.0360 | | 0.0125 | 19.23 | 3500 | 1.4126 | 62.8900 | 60.5952 | | 0.012 | 20.6 | 3750 | 1.4202 | 63.0709 | 60.3909 | | 0.0115 | 21.98 | 4000 | 1.4215 | 62.8649 | 60.1867 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3