jeffreymeetkai commited on
Commit
9d2aaff
1 Parent(s): 570430c

Upload folder using huggingface_hub

Browse files
config.json CHANGED
@@ -1 +1,28 @@
1
- {"architectures": ["LlamaForCausalLM"], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 128000, "eos_token_id": 128001, "hidden_act": "silu", "hidden_size": 8192, "initializer_range": 0.02, "intermediate_size": 28672, "max_position_embeddings": 8192, "model_type": "llama", "num_attention_heads": 64, "num_hidden_layers": 80, "num_key_value_heads": 8, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 500000.0, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.40.0.dev0", "use_cache": true, "vocab_size": 128256}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": ["LlamaForCausalLM", "FunctionaryForCausalLM"],
3
+ "auto_map": {
4
+ "AutoModelForCausalLM": "modeling_functionary.FunctionaryForCausalLM"
5
+ },
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128009,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 8192,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 28672,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 64,
17
+ "num_hidden_layers": 80,
18
+ "num_key_value_heads": 8,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 500000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.40.0.dev0",
26
+ "use_cache": true,
27
+ "vocab_size": 128256
28
+ }
generation_config.json ADDED
File without changes
modeling_functionary.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2024, MeetKai Inc. All rights reserved.
3
+ """PyTorch LLaMA model."""
4
+
5
+ import json
6
+ from typing import TYPE_CHECKING, Callable, List, Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.utils.checkpoint
10
+
11
+ from transformers.generation.configuration_utils import GenerationConfig
12
+ from transformers.generation.logits_process import LogitsProcessorList
13
+ from transformers.generation.stopping_criteria import StoppingCriteriaList
14
+ from transformers.generation.utils import (
15
+ GenerateBeamDecoderOnlyOutput,
16
+ GenerateBeamEncoderDecoderOutput,
17
+ GenerateDecoderOnlyOutput,
18
+ GenerateEncoderDecoderOutput
19
+ )
20
+ from transformers.models.llama.modeling_llama import LlamaForCausalLM
21
+ from transformers.utils import logging
22
+
23
+
24
+ if TYPE_CHECKING:
25
+ from transformers.modeling_utils import PreTrainedModel
26
+ from transformers.generation.streamers import BaseStreamer
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput]
31
+ GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput]
32
+ GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
33
+
34
+
35
+ class FunctionaryForCausalLM(LlamaForCausalLM):
36
+
37
+ def generate_tool_use(
38
+ self,
39
+ inputs: Optional[torch.Tensor] = None,
40
+ generation_config: Optional[GenerationConfig] = None,
41
+ logits_processor: Optional[LogitsProcessorList] = None,
42
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
43
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
44
+ synced_gpus: Optional[bool] = None,
45
+ assistant_model: Optional["PreTrainedModel"] = None,
46
+ streamer: Optional["BaseStreamer"] = None,
47
+ negative_prompt_ids: Optional[torch.Tensor] = None,
48
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
49
+ **kwargs,
50
+ ) -> Union[GenerateOutput, torch.LongTensor]:
51
+
52
+ tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we use it to parse raw output
53
+
54
+ results = self.generate(
55
+ inputs=inputs,
56
+ generation_config=generation_config,
57
+ logits_processor=logits_processor,
58
+ stopping_criteria=stopping_criteria,
59
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
60
+ synced_gpus=synced_gpus,
61
+ assistant_model=assistant_model,
62
+ streamer=streamer,
63
+ negative_prompt_ids=negative_prompt_ids,
64
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
65
+ **kwargs,
66
+ )
67
+
68
+ input_ids = kwargs.pop("input_ids")
69
+ function_call_token = ">>>"
70
+
71
+ correct_results = []
72
+ for input_id, result in zip(input_ids, results):
73
+ final_output_json = {"role": "assistant", "content": None, "tool_calls": None}
74
+ tool_calls = []
75
+ raw_output_str = tokenizer.decode(result[len(input_id):].cpu())
76
+ chunks = raw_output_str.split(function_call_token)
77
+ for i, chunk in enumerate(chunks):
78
+ if len(chunk) == 0:
79
+ continue
80
+
81
+ name, arguments = chunk[: chunk.index("\n")], chunk[chunk.index("\n") + 1:]
82
+ arguments = arguments[: -len("<|eot_id|>")] if arguments.endswith("<|eot_id|>") else arguments
83
+
84
+ if name == "all":
85
+ if final_output_json["content"] is None:
86
+ final_output_json["content"] = [arguments]
87
+ else:
88
+ final_output_json["content"].append(arguments)
89
+ else:
90
+ tool_calls.append(
91
+ {
92
+ "name": name,
93
+ "arguments": arguments
94
+ }
95
+ )
96
+
97
+ if final_output_json["content"] is not None:
98
+ final_output_json["content"] = " ".join(final_output_json["content"])
99
+ if len(tool_calls) > 0:
100
+ final_output_json["tool_calls"] = tool_calls
101
+ final_output_str = json.dumps(final_output_json, indent=4)
102
+ final_output_ids = tokenizer(final_output_str, add_special_tokens=False)["input_ids"]
103
+ correct_results.append(
104
+ torch.cat(
105
+ (result[:len(input_id)].cpu(), torch.tensor(final_output_ids))
106
+ )
107
+ )
108
+ max_len = max([tensor.shape[0] for tensor in correct_results])
109
+ correct_results = [
110
+ torch.nn.functional.pad(
111
+ correct_result, (0, max_len - correct_result.shape[0]), value=tokenizer.eos_token_id
112
+ ) for correct_result in correct_results
113
+ ]
114
+ correct_results = torch.stack(correct_results)
115
+
116
+ return correct_results
tokenization_functionary.py ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, MeetKai Inc. All rights reserved.
2
+
3
+ from copy import deepcopy
4
+ import json
5
+ from typing import Any, Dict, List, Literal, Optional, Union
6
+
7
+ import jsonref
8
+ from pydantic import BaseModel, Field, model_validator
9
+ from typing_extensions import Self
10
+
11
+ from transformers.tokenization_utils_base import BatchEncoding
12
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
13
+ from transformers.utils import TensorType, logging
14
+
15
+
16
+ logger = logging.get_logger(__name__)
17
+ SYSTEM_PROMPT = """You are capable of executing available function(s) if required.
18
+ Only execute function(s) when absolutely necessary.
19
+ Ask for the required input to:recipient==all
20
+ Use JSON for function arguments.
21
+ Respond in this format:
22
+ >>>${recipient}
23
+ ${content}
24
+ Available functions:
25
+ """
26
+ CODE_INTERPRETER_SYSTEM_PROMPT = """When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files."""
27
+
28
+ class Function(BaseModel):
29
+ name: str
30
+ description: Optional[str] = Field(default="")
31
+ parameters: Optional[dict] = None
32
+
33
+
34
+ class Tool(BaseModel):
35
+ type: Literal["function", "code_interpreter"]
36
+ function: Optional[Function] = None
37
+
38
+ @model_validator(mode="after")
39
+ def check_type_function_matches(self) -> Self:
40
+ if self.type == "function":
41
+ assert self.function is not None, '"function" must contain function description when `"type": "function"`'
42
+ else:
43
+ assert self.function is None, '"function" must not be provided when `"type": "code_interpreter"`'
44
+ return self
45
+
46
+
47
+ def convert_data_type(param_type: str) -> str:
48
+ """convert data_type to typescript data type
49
+ Args:
50
+ param_type (str): param_type
51
+ Returns:
52
+ str: param type in typescript
53
+ """
54
+ if param_type == "integer" or param_type == "float":
55
+ return "number"
56
+ return param_type
57
+
58
+
59
+ def get_param_type(param: Dict) -> str:
60
+ """get param_type of parameter
61
+ Args:
62
+ param (Dict): param dict in properties
63
+ Returns:
64
+ str: _description_
65
+ """
66
+ param_type = "any"
67
+ if "type" in param:
68
+ raw_param_type = param["type"]
69
+ if type(raw_param_type) is list:
70
+ param_type = " | ".join(raw_param_type)
71
+ else:
72
+ param_type = raw_param_type
73
+
74
+ else: # in many cases, the json schema contains: oneOf instead of "type"
75
+ if "oneOf" in param:
76
+ one_of_types = []
77
+ for item in param["oneOf"]:
78
+ if "type" in item:
79
+ one_of_types.append(convert_data_type(item["type"]))
80
+ one_of_types = list(set(one_of_types))
81
+ param_type = " | ".join(one_of_types)
82
+ return convert_data_type(param_type)
83
+
84
+
85
+ def get_format_param(param: Dict) -> Optional[str]:
86
+ """Get "format" from param. There are cases where format is not directly in param but in oneOf
87
+ Args:
88
+ param (Dict): _description_
89
+ Returns:
90
+ Optional[str]: _description_
91
+ """
92
+ if "format" in param:
93
+ return param["format"]
94
+ if "oneOf" in param:
95
+ formats = []
96
+ for item in param["oneOf"]:
97
+ if "format" in item:
98
+ formats.append(item["format"])
99
+ if len(formats) > 0:
100
+ return " or ".join(formats)
101
+ return None
102
+
103
+
104
+ def get_param_info(param: Dict) -> Optional[str]:
105
+ """get additional information about parameter such as: format, default value, min, max, ...
106
+ Args:
107
+ param (Dict): _description_
108
+ Returns:
109
+ Optional[str]: _description_
110
+ """
111
+ param_type = param.get("type", "any")
112
+ info_list = []
113
+ if "description" in param:
114
+ desc = param["description"]
115
+ if not desc.endswith("."):
116
+ desc += "."
117
+ info_list.append(desc)
118
+
119
+ if "default" in param:
120
+ default_value = param["default"]
121
+ if param_type == "string":
122
+ default_value = f'"{default_value}"' # if string --> add ""
123
+ info_list.append(f"Default={default_value}.")
124
+
125
+ format_param = get_format_param(param)
126
+ if format_param is not None:
127
+ info_list.append("Format=" + format_param)
128
+
129
+ for field, field_name in [
130
+ ("maximum", "Maximum"),
131
+ ("minimum", "Minimum"),
132
+ ("maxLength", "Maximum length"),
133
+ ("minLength", "Minimum length"),
134
+ ]:
135
+ if field in param:
136
+ info_list.append(f"{field_name}=" + str(param[field]))
137
+
138
+ if len(info_list) > 0:
139
+ result = "// " + " ".join(info_list)
140
+ result = result.replace("\n", " ")
141
+ return result
142
+ return None
143
+
144
+
145
+ def append_new_param_info(
146
+ info_list: List[str],
147
+ param_declaration: str,
148
+ comment_info: Optional[str],
149
+ examples_info: List,
150
+ depth: int,
151
+ ):
152
+ """Append a new parameter with comment to the info_list
153
+ Args:
154
+ info_lines (List[str]): current info_list
155
+ param_declaration (str): param: type
156
+ comment_info (Optional[str]): information of comment
157
+ examples_info (List): information of examples given
158
+ depth (int): level of nested param
159
+ """
160
+ offset = ""
161
+ if depth >= 1:
162
+ offset = "".join([" " for _ in range(depth)])
163
+ if comment_info is not None:
164
+ # if depth == 0: # format: //comment\nparam: type
165
+ info_list.append(f"{offset}{comment_info}")
166
+ if len(examples_info) > 0:
167
+ for example in examples_info:
168
+ info_list.append(f"{offset}{example}")
169
+ info_list.append(f"{offset}{param_declaration}")
170
+ # else: # format: param: type // comment
171
+ # info_list.append(f"{offset}{param_declaration} {comment_info}")
172
+ else:
173
+ info_list.append(f"{offset}{param_declaration}")
174
+
175
+
176
+ def get_examples_info(param_name: str, examples: List) -> List:
177
+ """get information about examples provided
178
+ Args:
179
+ param_name (str): _description_
180
+ examples (List): _description_
181
+ Returns:
182
+ List: _description_
183
+ """
184
+ examples_list = [f"// Example {param_name}:"]
185
+ for example in examples:
186
+ if isinstance(example, dict) or isinstance(example, list):
187
+ example_str = json.dumps(example, ensure_ascii=False).replace('\n', '\\n')
188
+ else:
189
+ example_str = str(example).replace('\n', '\\n')
190
+ examples_list.append(f"// {example_str}")
191
+
192
+ return examples_list
193
+
194
+
195
+ def get_enum_option_str(enum_options: List) -> str:
196
+ """get enum option separated by: "|"
197
+ Args:
198
+ enum_options (List): list of options
199
+ Returns:
200
+ _type_: concatenation of options separated by "|"
201
+ """
202
+ # if each option is string --> add quote
203
+ return " | ".join([f'"{v}"' if type(v) is str else str(v) for v in enum_options])
204
+
205
+
206
+ def get_array_typescript(
207
+ param_name: Optional[str], param_dic: dict, depth: int = 0
208
+ ) -> str:
209
+ """recursive implementation for generating type script of array
210
+ Args:
211
+ param_name (Optional[str]): name of param, optional
212
+ param_dic (dict): param_dic
213
+ depth (int, optional): nested level. Defaults to 0.
214
+ Returns:
215
+ _type_: typescript of array
216
+ """
217
+ offset = ""
218
+ if depth >= 1:
219
+ offset = "".join([" " for _ in range(depth)])
220
+ items_info = param_dic.get("items", {})
221
+
222
+ if len(items_info) == 0:
223
+ if param_name is not None:
224
+ return f"{offset}{param_name}: []"
225
+ else:
226
+ return "[]"
227
+ array_type = get_param_type(items_info)
228
+ if array_type == "object":
229
+ info_lines = []
230
+ child_lines = get_parameter_typescript(
231
+ items_info.get("properties", {}), items_info.get("required", []), depth + 1
232
+ )
233
+ # if comment_info is not None:
234
+ # info_lines.append(f"{offset}{comment_info}")
235
+ if param_name is not None:
236
+ info_lines.append(f"{offset}{param_name}" + ": {")
237
+ else:
238
+ info_lines.append(f"{offset}" + "{")
239
+ info_lines.extend(child_lines)
240
+ info_lines.append(f"{offset}" + "}[]")
241
+ return "\n".join(info_lines)
242
+
243
+ elif array_type == "array":
244
+ item_info = get_array_typescript(None, items_info, depth + 1)
245
+ if param_name is None:
246
+ return f"{item_info}[]"
247
+ return f"{offset}{param_name}: {item_info.strip()}[]"
248
+
249
+ else:
250
+ if "enum" in items_info:
251
+ item_type = get_enum_option_str(items_info["enum"])
252
+ if param_name is None:
253
+ return f"({item_type})[]"
254
+ else:
255
+ return f"{offset}{param_name}: ({item_type})[]"
256
+ else:
257
+ if param_name is None:
258
+ return f"{array_type}[]"
259
+ else:
260
+ return f"{offset}{param_name}: {array_type}[],"
261
+
262
+
263
+ def get_parameter_typescript(properties, required_params, depth=0) -> List[str]:
264
+ """Recursion, returning the information about parameters including data type, description and other information
265
+ These kinds of information will be put into the prompt
266
+ Args:
267
+ properties (_type_): properties in parameters
268
+ required_params (_type_): List of required parameters
269
+ depth (int, optional): the depth of params (nested level). Defaults to 0.
270
+ Returns:
271
+ _type_: list of lines containing information about all parameters
272
+ """
273
+ tp_lines = []
274
+ for param_name, param in properties.items():
275
+ # Sometimes properties have "required" field as a list of string.
276
+ # Even though its supposed to be not under properties. So we skip it
277
+ if not isinstance(param, dict):
278
+ continue
279
+ # Param Description
280
+ comment_info = get_param_info(param)
281
+ # Param Examples
282
+ examples_info = []
283
+ if "examples" in param:
284
+ examples_info = get_examples_info(param_name, param["examples"])
285
+ # Param Name declaration
286
+ param_declaration = f"{param_name}"
287
+ if isinstance(required_params, list):
288
+ if param_name not in required_params:
289
+ param_declaration += "?"
290
+ param_type = get_param_type(param)
291
+
292
+ offset = ""
293
+ if depth >= 1:
294
+ offset = "".join([" " for _ in range(depth)])
295
+
296
+ if param_type == "object": # param_type is object
297
+ child_lines = get_parameter_typescript(
298
+ param.get("properties", {}), param.get("required", []), depth + 1
299
+ )
300
+ if comment_info is not None:
301
+ tp_lines.append(f"{offset}{comment_info}")
302
+ if len(examples_info) > 0:
303
+ for example in examples_info:
304
+ tp_lines.append(f"{offset}{example}")
305
+
306
+ param_declaration += ": {"
307
+ tp_lines.append(f"{offset}{param_declaration}")
308
+ tp_lines.extend(child_lines)
309
+ tp_lines.append(f"{offset}" + "},")
310
+
311
+ elif param_type == "array": # param_type is an array
312
+ item_info = param.get("items", {})
313
+ if "type" not in item_info: # don't know type of array
314
+ param_declaration += ": [],"
315
+ append_new_param_info(
316
+ tp_lines, param_declaration, comment_info, examples_info, depth
317
+ )
318
+ else:
319
+ array_declaration = get_array_typescript(
320
+ param_declaration, param, depth
321
+ )
322
+ if not array_declaration.endswith(","):
323
+ array_declaration += ","
324
+ if comment_info is not None:
325
+ tp_lines.append(f"{offset}{comment_info}")
326
+ if len(examples_info) > 0:
327
+ for example in examples_info:
328
+ tp_lines.append(f"{offset}{example}")
329
+ tp_lines.append(array_declaration)
330
+ else:
331
+ if "enum" in param:
332
+ param_type = get_enum_option_str(param["enum"])
333
+ # param_type = " | ".join([f'"{v}"' for v in param["enum"]])
334
+ if "nullable" in param and param["nullable"] is True:
335
+ param_type += " | null"
336
+ param_declaration += f": {param_type},"
337
+ append_new_param_info(
338
+ tp_lines, param_declaration, comment_info, examples_info, depth
339
+ )
340
+
341
+ return tp_lines
342
+
343
+ def generate_schema_from_functions(
344
+ functions: List[Function], namespace="functions"
345
+ ) -> str:
346
+ """
347
+ Convert functions schema to a schema that language models can understand.
348
+ """
349
+
350
+ schema = "// Supported function definitions that should be called when necessary.\n"
351
+ schema += f"namespace {namespace} {{\n\n"
352
+
353
+ for function in functions:
354
+ # Convert a Function object to dict, if necessary
355
+ if not isinstance(function, dict):
356
+ function = function.model_dump()
357
+ function_name = function.get("name", None)
358
+ if function_name is None:
359
+ continue
360
+
361
+ description = function.get("description", "")
362
+ schema += f"// {description}\n"
363
+ schema += f"type {function_name}"
364
+
365
+ parameters = function.get("parameters", None)
366
+ if parameters is not None and parameters.get("properties") is not None:
367
+ parameters = deepcopy(jsonref.JsonRef.replace_refs(parameters))
368
+ schema += " = (_: {\n"
369
+ required_params = parameters.get("required", [])
370
+ tp_lines = get_parameter_typescript(
371
+ parameters.get("properties"),
372
+ required_params,
373
+ 0,
374
+ )
375
+ schema += "\n".join(tp_lines)
376
+ schema += "\n}) => any;\n\n"
377
+ else:
378
+ # Doesn't have any parameters
379
+ schema += " = () => any;\n\n"
380
+
381
+ schema += f"}} // namespace {namespace}"
382
+
383
+ return schema
384
+
385
+ class FunctionaryTokenizer(PreTrainedTokenizerFast):
386
+ def apply_chat_template(
387
+ self,
388
+ conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], str],
389
+ tools: Optional[List[Dict[str, Any]]],
390
+ chat_template: Optional[str] = None,
391
+ add_generation_prompt: bool = False,
392
+ tokenize: bool = True,
393
+ padding: bool = False,
394
+ truncation: bool = False,
395
+ max_length: Optional[int] = None,
396
+ return_tensors: Optional[Union[str, TensorType]] = None,
397
+ return_dict: bool = False,
398
+ tokenizer_kwargs: Optional[Dict[str, Any]] = None,
399
+ **kwargs,
400
+ ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
401
+
402
+ if return_dict and not tokenize:
403
+ raise ValueError(
404
+ "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
405
+ "of tokenizer outputs to return."
406
+ )
407
+
408
+ if tokenizer_kwargs is None:
409
+ tokenizer_kwargs = {}
410
+
411
+ using_default_template = False
412
+
413
+ # First, handle the cases when the model has a dict of multiple templates
414
+ if isinstance(self.chat_template, dict) or (
415
+ self.chat_template is None and isinstance(self.default_chat_template, dict)
416
+ ):
417
+ if self.chat_template is not None:
418
+ template_dict = self.chat_template
419
+ using_default_dict = False
420
+ else:
421
+ template_dict = self.default_chat_template
422
+ using_default_dict = True
423
+ if chat_template is not None and chat_template in template_dict:
424
+ # The user can pass the name of a template to the chat template argument instead of an entire template
425
+ chat_template = template_dict[chat_template]
426
+ if using_default_dict:
427
+ using_default_template = True
428
+ elif chat_template is None and "default" in template_dict:
429
+ chat_template = template_dict["default"]
430
+ if using_default_dict:
431
+ using_default_template = True
432
+ elif chat_template is None:
433
+ raise ValueError(
434
+ "This model has multiple chat templates with no default specified! Please either pass a chat "
435
+ "template or the name of the template you wish to use to the `chat_template` argument. Available "
436
+ f"template names are {sorted(template_dict.keys())}."
437
+ )
438
+ elif chat_template is None:
439
+ # These are the cases when the model has a single template
440
+ # priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template
441
+ if self.chat_template is not None:
442
+ chat_template = self.chat_template
443
+ else:
444
+ chat_template = self.default_chat_template
445
+ using_default_template = True
446
+
447
+ if using_default_template:
448
+ logger.warning_once(
449
+ "No chat template is set for this tokenizer, falling back to a default class-level template. This is "
450
+ "very error-prone, because models are often trained with templates different from the class default! "
451
+ "Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which "
452
+ "point any code depending on them will stop working. We recommend setting a valid chat template before "
453
+ "then to ensure that this model continues working without issues."
454
+ )
455
+
456
+ # Prepare tools/functions into schema
457
+ functions_pydantic_to_render = []
458
+ has_code_interpreter = False
459
+ for i in range(len(tools)):
460
+ tool_pydantic = Tool.model_validate(tools[i])
461
+ if tool_pydantic.type == "function":
462
+ functions_pydantic_to_render.append(tool_pydantic.function)
463
+ else:
464
+ has_code_interpreter = True
465
+ # Insert system prompt
466
+ conversation.insert(0, {"role": "system", "content": SYSTEM_PROMPT + generate_schema_from_functions(functions_pydantic_to_render)})
467
+ if has_code_interpreter:
468
+ conversation.insert(1, {"role": "system", "content": CODE_INTERPRETER_SYSTEM_PROMPT})
469
+
470
+ # Compilation function uses a cache to avoid recompiling the same template
471
+ compiled_template = self._compile_jinja_template(chat_template)
472
+
473
+ if isinstance(conversation, (list, tuple)) and (
474
+ isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "messages")
475
+ ):
476
+ conversations = conversation
477
+ is_batched = True
478
+ else:
479
+ conversations = [conversation]
480
+ is_batched = False
481
+
482
+ rendered = []
483
+ template_kwargs = {**self.special_tokens_map, **kwargs} # kwargs overwrite special tokens if both are present
484
+ for chat in conversations:
485
+ if hasattr(chat, "messages"):
486
+ # Indicates it's a Conversation object
487
+ chat = chat.messages
488
+ rendered_chat = compiled_template.render(
489
+ messages=chat, add_generation_prompt=add_generation_prompt, **template_kwargs
490
+ )
491
+ rendered.append(rendered_chat)
492
+
493
+ if not is_batched:
494
+ rendered = rendered[0]
495
+
496
+ if tokenize:
497
+ out = self(
498
+ rendered,
499
+ padding=padding,
500
+ truncation=truncation,
501
+ max_length=max_length,
502
+ add_special_tokens=False,
503
+ return_tensors=return_tensors,
504
+ **tokenizer_kwargs,
505
+ )
506
+ if return_dict:
507
+ return out
508
+ else:
509
+ return out["input_ids"]
510
+ else:
511
+ return rendered
tokenizer_config.json CHANGED
@@ -2050,7 +2050,7 @@
2050
  }
2051
  },
2052
  "bos_token": "<|begin_of_text|>",
2053
- "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' or message['role'] == 'system' %}\n{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] + '<|eot_id|>' }}{% elif message['role'] == 'tool' %}\n{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] + '<|eot_id|>' }}{% else %}\n{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'}}{% if message['content'] is not none %}\n{{ '>>>all\n' + message['content'] }}{% endif %}\n{% if 'tool_calls' in message and message['tool_calls'] is not none %}\n{% for tool_call in message['tool_calls'] %}\n{{ '>>>' + tool_call['function']['name'] + '\n' + tool_call['function']['arguments'] }}{% endfor %}\n{% endif %}\n{{ '<|eot_id|>' }}{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}{{ '<|start_header_id|>{role}<|end_header_id|>\n\n' }}{% endif %}",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
2056
  "model_input_names": [
@@ -2058,5 +2058,8 @@
2058
  "attention_mask"
2059
  ],
2060
  "model_max_length": 1000000000000000019884624838656,
2061
- "tokenizer_class": "PreTrainedTokenizerFast"
 
 
 
2062
  }
 
2050
  }
2051
  },
2052
  "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' or message['role'] == 'system' %}\n{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] + '<|eot_id|>' }}{% elif message['role'] == 'tool' %}\n{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] + '<|eot_id|>' }}{% else %}\n{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'}}{% if message['content'] is not none %}\n{{ '>>>all\n' + message['content'] }}{% endif %}\n{% if 'tool_calls' in message and message['tool_calls'] is not none %}\n{% for tool_call in message['tool_calls'] %}\n{{ '>>>' + tool_call['function']['name'] + '\n' + tool_call['function']['arguments'] }}{% endfor %}\n{% endif %}\n{{ '<|eot_id|>' }}{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
2056
  "model_input_names": [
 
2058
  "attention_mask"
2059
  ],
2060
  "model_max_length": 1000000000000000019884624838656,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast",
2062
+ "auto_map": {
2063
+ "AutoTokenizer": ["tokenization_functionary.FunctionaryTokenizer", null]
2064
+ }
2065
  }