--- base_model: openai/whisper-medium datasets: - google/fleurs language: - hi license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Medium Hindi -megha sharma results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: hi_in split: None args: 'config: hi, split: test' metrics: - type: wer value: 18.44006247559547 name: Wer --- # Whisper Medium Hindi -megha sharma This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.3508 - Wer: 18.4401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0669 | 3.3898 | 1000 | 0.2077 | 20.9098 | | 0.0118 | 6.7797 | 2000 | 0.2657 | 19.4162 | | 0.0026 | 10.1695 | 3000 | 0.2930 | 18.9477 | | 0.0018 | 13.5593 | 4000 | 0.3045 | 18.3717 | | 0.0017 | 16.9492 | 5000 | 0.3281 | 18.7134 | | 0.0011 | 20.3390 | 6000 | 0.3288 | 18.1179 | | 0.0005 | 23.7288 | 7000 | 0.3398 | 18.3034 | | 0.0004 | 27.1186 | 8000 | 0.3515 | 18.5182 | | 0.0003 | 30.5085 | 9000 | 0.3508 | 18.4401 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1