mgalkin commited on
Commit
b11e84c
1 Parent(s): c810120

modeling script

Browse files
Files changed (5) hide show
  1. .gitignore +15 -0
  2. modeling.py +8 -7
  3. ultra/eval.py +153 -0
  4. ultra/layers.py +1 -1
  5. ultra/util.py +7 -0
.gitignore ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ output/
10
+ .vscode/
11
+ .DS_Store
12
+ datasets/
13
+ ckpts/
14
+ *.csv
15
+ *.txt
modeling.py CHANGED
@@ -1,9 +1,10 @@
1
  import os
2
  import sys
3
- from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
4
  sys.path.append(os.path.dirname(os.path.dirname(__file__)))
5
  from ultra.models import Ultra
6
- import torch
 
7
 
8
 
9
  class UltraConfig(PretrainedConfig):
@@ -58,8 +59,8 @@ class UltraLinkPrediction(PreTrainedModel):
58
 
59
  if __name__ == "__main__":
60
 
61
- ultra_config = UltraConfig()
62
- ultra_model = UltraLinkPrediction(ultra_config)
63
- ultra_model = UltraLinkPrediction.from_pretrained("mgalkin/ultra_3g")
64
- print(ultra_model)
65
- print("Done")
 
1
  import os
2
  import sys
3
+ from transformers import PretrainedConfig, PreTrainedModel
4
  sys.path.append(os.path.dirname(os.path.dirname(__file__)))
5
  from ultra.models import Ultra
6
+ from ultra.datasets import WN18RR, CoDExSmall, FB15k237, FB15k237Inductive
7
+ from ultra.eval import test
8
 
9
 
10
  class UltraConfig(PretrainedConfig):
 
59
 
60
  if __name__ == "__main__":
61
 
62
+ model = UltraLinkPrediction.from_pretrained("mgalkin/ultra_3g")
63
+ dataset = CoDExSmall(root="./datasets/")
64
+ test(model, mode="test", dataset=dataset, gpus=None)
65
+ # mrr: 0.472035
66
+ # hits@10: 0.66849
ultra/eval.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch import distributed as dist
5
+ from torch.utils import data as torch_data
6
+ from torch_geometric.data import Data
7
+
8
+ from ultra import tasks, util
9
+
10
+
11
+ TRANSDUCTIVE = ("WordNet18RR", "RelLinkPredDataset", "CoDExSmall", "CoDExMedium", "CoDExLarge",
12
+ "YAGO310", "NELL995", "ConceptNet100k", "DBpedia100k", "Hetionet", "AristoV4",
13
+ "WDsinger", "NELL23k", "FB15k237_10", "FB15k237_20", "FB15k237_50")
14
+
15
+
16
+ def get_filtered_data(dataset, mode):
17
+ train_data, valid_data, test_data = dataset[0], dataset[1], dataset[2]
18
+ ds_name = dataset.__class__.__name__
19
+
20
+ if ds_name in TRANSDUCTIVE:
21
+ filtered_data = Data(edge_index=dataset._data.target_edge_index, edge_type=dataset._data.target_edge_type, num_nodes=dataset[0].num_nodes)
22
+ else:
23
+ if "ILPC" in ds_name or "Ingram" in ds_name:
24
+ full_inference_edges = torch.cat([valid_data.edge_index, valid_data.target_edge_index, test_data.target_edge_index], dim=1)
25
+ full_inference_etypes = torch.cat([valid_data.edge_type, valid_data.target_edge_type, test_data.target_edge_type])
26
+ filtered_data = Data(edge_index=full_inference_edges, edge_type=full_inference_etypes, num_nodes=test_data.num_nodes)
27
+ else:
28
+ # test filtering graph: inference edges + test edges
29
+ full_inference_edges = torch.cat([test_data.edge_index, test_data.target_edge_index], dim=1)
30
+ full_inference_etypes = torch.cat([test_data.edge_type, test_data.target_edge_type])
31
+ if mode == "test":
32
+ filtered_data = Data(edge_index=full_inference_edges, edge_type=full_inference_etypes, num_nodes=test_data.num_nodes)
33
+ else:
34
+ # validation filtering graph: train edges + validation edges
35
+ filtered_data = Data(
36
+ edge_index=torch.cat([train_data.edge_index, valid_data.target_edge_index], dim=1),
37
+ edge_type=torch.cat([train_data.edge_type, valid_data.target_edge_type])
38
+ )
39
+
40
+ return filtered_data
41
+
42
+
43
+ @torch.no_grad()
44
+ def test(model, mode, dataset, batch_size=32, eval_metrics=["mrr", "hits@10"], gpus=None, return_metrics=False):
45
+ logger = util.get_root_logger()
46
+ test_data = dataset[1] if mode == "valid" else dataset[2]
47
+ filtered_data = get_filtered_data(dataset, mode)
48
+
49
+ device = util.get_devices(gpus)
50
+ world_size = util.get_world_size()
51
+ rank = util.get_rank()
52
+
53
+ test_triplets = torch.cat([test_data.target_edge_index, test_data.target_edge_type.unsqueeze(0)]).t()
54
+ sampler = torch_data.DistributedSampler(test_triplets, world_size, rank)
55
+ test_loader = torch_data.DataLoader(test_triplets, batch_size, sampler=sampler)
56
+
57
+ model.eval()
58
+ rankings = []
59
+ num_negatives = []
60
+ tail_rankings, num_tail_negs = [], [] # for explicit tail-only evaluation needed for 5 datasets
61
+ for batch in test_loader:
62
+ t_batch, h_batch = tasks.all_negative(test_data, batch)
63
+ t_pred = model(test_data, t_batch)
64
+ h_pred = model(test_data, h_batch)
65
+
66
+ if filtered_data is None:
67
+ t_mask, h_mask = tasks.strict_negative_mask(test_data, batch)
68
+ else:
69
+ t_mask, h_mask = tasks.strict_negative_mask(filtered_data, batch)
70
+ pos_h_index, pos_t_index, pos_r_index = batch.t()
71
+ t_ranking = tasks.compute_ranking(t_pred, pos_t_index, t_mask)
72
+ h_ranking = tasks.compute_ranking(h_pred, pos_h_index, h_mask)
73
+ num_t_negative = t_mask.sum(dim=-1)
74
+ num_h_negative = h_mask.sum(dim=-1)
75
+
76
+ rankings += [t_ranking, h_ranking]
77
+ num_negatives += [num_t_negative, num_h_negative]
78
+
79
+ tail_rankings += [t_ranking]
80
+ num_tail_negs += [num_t_negative]
81
+
82
+ ranking = torch.cat(rankings)
83
+ num_negative = torch.cat(num_negatives)
84
+ all_size = torch.zeros(world_size, dtype=torch.long, device=device)
85
+ all_size[rank] = len(ranking)
86
+
87
+ # ugly repetitive code for tail-only ranks processing
88
+ tail_ranking = torch.cat(tail_rankings)
89
+ num_tail_neg = torch.cat(num_tail_negs)
90
+ all_size_t = torch.zeros(world_size, dtype=torch.long, device=device)
91
+ all_size_t[rank] = len(tail_ranking)
92
+ if world_size > 1:
93
+ dist.all_reduce(all_size, op=dist.ReduceOp.SUM)
94
+ dist.all_reduce(all_size_t, op=dist.ReduceOp.SUM)
95
+
96
+ # obtaining all ranks
97
+ cum_size = all_size.cumsum(0)
98
+ all_ranking = torch.zeros(all_size.sum(), dtype=torch.long, device=device)
99
+ all_ranking[cum_size[rank] - all_size[rank]: cum_size[rank]] = ranking
100
+ all_num_negative = torch.zeros(all_size.sum(), dtype=torch.long, device=device)
101
+ all_num_negative[cum_size[rank] - all_size[rank]: cum_size[rank]] = num_negative
102
+
103
+ # the same for tails-only ranks
104
+ cum_size_t = all_size_t.cumsum(0)
105
+ all_ranking_t = torch.zeros(all_size_t.sum(), dtype=torch.long, device=device)
106
+ all_ranking_t[cum_size_t[rank] - all_size_t[rank]: cum_size_t[rank]] = tail_ranking
107
+ all_num_negative_t = torch.zeros(all_size_t.sum(), dtype=torch.long, device=device)
108
+ all_num_negative_t[cum_size_t[rank] - all_size_t[rank]: cum_size_t[rank]] = num_tail_neg
109
+ if world_size > 1:
110
+ dist.all_reduce(all_ranking, op=dist.ReduceOp.SUM)
111
+ dist.all_reduce(all_num_negative, op=dist.ReduceOp.SUM)
112
+ dist.all_reduce(all_ranking_t, op=dist.ReduceOp.SUM)
113
+ dist.all_reduce(all_num_negative_t, op=dist.ReduceOp.SUM)
114
+
115
+ metrics = {}
116
+ if rank == 0:
117
+ for metric in eval_metrics:
118
+ if "-tail" in metric:
119
+ _metric_name, direction = metric.split("-")
120
+ if direction != "tail":
121
+ raise ValueError("Only tail metric is supported in this mode")
122
+ _ranking = all_ranking_t
123
+ _num_neg = all_num_negative_t
124
+ else:
125
+ _ranking = all_ranking
126
+ _num_neg = all_num_negative
127
+ _metric_name = metric
128
+
129
+ if _metric_name == "mr":
130
+ score = _ranking.float().mean()
131
+ elif _metric_name == "mrr":
132
+ score = (1 / _ranking.float()).mean()
133
+ elif _metric_name.startswith("hits@"):
134
+ values = _metric_name[5:].split("_")
135
+ threshold = int(values[0])
136
+ if len(values) > 1:
137
+ num_sample = int(values[1])
138
+ # unbiased estimation
139
+ fp_rate = (_ranking - 1).float() / _num_neg
140
+ score = 0
141
+ for i in range(threshold):
142
+ # choose i false positive from num_sample - 1 negatives
143
+ num_comb = math.factorial(num_sample - 1) / \
144
+ math.factorial(i) / math.factorial(num_sample - i - 1)
145
+ score += num_comb * (fp_rate ** i) * ((1 - fp_rate) ** (num_sample - i - 1))
146
+ score = score.mean()
147
+ else:
148
+ score = (_ranking <= threshold).float().mean()
149
+ logger.warning("%s: %g" % (metric, score))
150
+ metrics[metric] = score
151
+ mrr = (1 / all_ranking.float()).mean()
152
+
153
+ return mrr if not return_metrics else metrics
ultra/layers.py CHANGED
@@ -177,7 +177,7 @@ class GeneralizedRelationalConv(MessagePassing):
177
  # fused computation of message and aggregate steps with the custom rspmm cuda kernel
178
  # speed up computation by several times
179
  # reduce memory complexity from O(|E|d) to O(|V|d), so we can apply it to larger graphs
180
- from .rspmm import generalized_rspmm
181
 
182
  batch_size, num_node = input.shape[:2]
183
  input = input.transpose(0, 1).flatten(1)
 
177
  # fused computation of message and aggregate steps with the custom rspmm cuda kernel
178
  # speed up computation by several times
179
  # reduce memory complexity from O(|E|d) to O(|V|d), so we can apply it to larger graphs
180
+ from ultra.rspmm.rspmm import generalized_rspmm
181
 
182
  batch_size, num_node = input.shape[:2]
183
  input = input.transpose(0, 1).flatten(1)
ultra/util.py CHANGED
@@ -109,6 +109,13 @@ def get_device(cfg):
109
  device = torch.device("cpu")
110
  return device
111
 
 
 
 
 
 
 
 
112
 
113
  def create_working_directory(cfg):
114
  file_name = "working_dir.tmp"
 
109
  device = torch.device("cpu")
110
  return device
111
 
112
+ def get_devices(gpus):
113
+ if gpus is not None:
114
+ device = torch.device(gpus[get_rank()])
115
+ else:
116
+ device = torch.device("cpu")
117
+ return device
118
+
119
 
120
  def create_working_directory(cfg):
121
  file_name = "working_dir.tmp"