import os import sys from transformers import PretrainedConfig, PreTrainedModel #sys.path.append(os.path.dirname(os.path.dirname(__file__))) from ultra.models import Ultra from ultra.datasets import WN18RR, CoDExSmall, FB15k237, FB15k237Inductive from ultra.eval import test class UltraConfig(PretrainedConfig): model_type = "ultra" def __init__( self, relation_model_layers: int = 6, relation_model_dim: int = 64, entity_model_layers: int = 6, entity_model_dim: int = 64, **kwargs): self.relation_model_cfg = dict( input_dim=relation_model_dim, hidden_dims=[relation_model_dim]*relation_model_layers, message_func="distmult", aggregate_func="sum", short_cut=True, layer_norm=True ) self.entity_model_cfg = dict( input_dim=entity_model_dim, hidden_dims=[entity_model_dim]*entity_model_layers, message_func="distmult", aggregate_func="sum", short_cut=True, layer_norm=True ) super().__init__(**kwargs) class UltraLinkPrediction(PreTrainedModel): config_class = UltraConfig def __init__(self, config): super().__init__(config) self.model = Ultra( rel_model_cfg=config.relation_model_cfg, entity_model_cfg=config.entity_model_cfg, ) def forward(self, data, batch): # data: PyG data object # batch shape: (bs, 1+num_negs, 3) return self.model.forward(data, batch) if __name__ == "__main__": model = UltraLinkPrediction.from_pretrained("mgalkin/ultra_4g") dataset = CoDExSmall(root="./datasets/") test(model, mode="test", dataset=dataset, gpus=None) # mrr: 0.463971 # hits@10: 0.666028