--- datasets: - yuvalkirstain/pickapic_v2 language: - en library_name: diffusers pipeline_tag: text-to-image license: openrail++ --- # Diffusion Model Alignment Using Direct Preference Optimization Direct Preference Optimization (DPO) for text-to-image diffusion models is a method to align diffusion models to text human preferences by directly optimizing on human comparison data. Please check our paper at [Diffusion Model Alignment Using Direct Preference Optimization](https://arxiv.org/abs/2311.12908). This model is fine-tuned from [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on offline human preference data [pickapic_v2](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2). ## Code The code is available [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/diffusion_dpo). ## SDXL We also have a model finedtuned from [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) available at [dpo-sdxl-text2image-v1](https://huggingface.co/mhdang/dpo-sdxl-text2image-v1). ## A quick example ```python from diffusers import StableDiffusionPipeline, UNet2DConditionModel import torch # load pipeline model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) # load finetuned model unet_id = "mhdang/dpo-sd1.5-text2image-v1" unet = UNet2DConditionModel.from_pretrained(unet_id, subfolder="unet", torch_dtype=torch.float16) pipe.unet = unet pipe = pipe.to("cuda") prompt = "Two cats playing chess on a tree branch" image = pipe(prompt, guidance_scale=7.5).images[0].resize((512,512)) image.save("cats_playing_chess.png") ``` More details coming soon.