File size: 2,351 Bytes
df9a8b5 7fdea05 2181289 7fdea05 df9a8b5 2181289 df9a8b5 d3e4599 df9a8b5 fcc4ce0 383a80c abdbd9c df9a8b5 dc4df55 df9a8b5 34091d3 df9a8b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language: "en"
tags:
- distilroberta
- sentiment
- emotion
- twitter
- reddit
widget:
- text: "Oh my God, he's lost it. He's totally lost it."
- text: "What?"
- text: "Wow, congratulations! So excited for you!"
---
# Fine-tuned DistilRoBERTa-base for Emotion Classification 🤬🤢😀😐😭😲
# Model Description
DistilRoBERTa-base is a transformer model that performs sentiment analysis. I fine-tuned the model on transcripts from the Friends show with the goal of classifying emotions from text data, specifically dialogue from Netflix shows or movies. The model predicts 6 Ekman emotions and a neutral class. These emotions include anger, disgust, fear, joy, neutrality, sadness, and surprise.
The model is a fine-tuned version of [Emotion English DistilRoBERTa-base](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/) and [DistilRoBERTa-base](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base). This model was initially trained on the following table from [Emotion English DistilRoBERTa-base](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/):
|Name|anger|disgust|fear|joy|neutral|sadness|surprise|
|---|---|---|---|---|---|---|---|
|Crowdflower (2016)|Yes|-|-|Yes|Yes|Yes|Yes|
|Emotion Dataset, Elvis et al. (2018)|Yes|-|Yes|Yes|-|Yes|Yes|
|GoEmotions, Demszky et al. (2020)|Yes|Yes|Yes|Yes|Yes|Yes|Yes|
|ISEAR, Vikash (2018)|Yes|Yes|Yes|Yes|-|Yes|-|
|MELD, Poria et al. (2019)|Yes|Yes|Yes|Yes|Yes|Yes|Yes|
|SemEval-2018, EI-reg, Mohammad et al. (2018) |Yes|-|Yes|Yes|-|Yes|-|
It was fine-tuned on:
|Name|anger|disgust|fear|joy|neutral|sadness|surprise|
|---|---|---|---|---|---|---|---|
|Emotion Lines (Friends)|Yes|Yes|Yes|Yes|Yes|Yes|Yes|
# How to Use
```python
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="michellejieli/emotion_text_classifier")
classifier("I love this!")
```
```python
Output:
[{'label': 'joy', 'score': 0.9887555241584778}]
```
# Contact
Please reach out to [michelleli1999@gmail.com](mailto:michelleli1999@gmail.com) if you have any questions or feedback.
# Reference
```
Jochen Hartmann, "Emotion English DistilRoBERTa-base". https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/, 2022.
Ashritha R Murthy and K M Anil Kumar 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1110 012009
``` |