File size: 1,246 Bytes
c67f260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# InfoXLM

**InfoXLM** (NAACL 2021, [paper](https://arxiv.org/pdf/2007.07834.pdf), [repo](https://github.com/microsoft/unilm/tree/master/infoxlm), [model](https://huggingface.co/microsoft/infoxlm-base)) InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training.

**MD5**

```
b9d214025837250ede2f69c9385f812c  config.json
bd6b1f392293f0cd9cd829c02971ecd9  pytorch_model.bin
bf25eb5120ad92ef5c7d8596b5dc4046  sentencepiece.bpe.model
eedbd60a7268b9fc45981b849664f747  tokenizer.json
```

**BibTeX**

```
@inproceedings{chi-etal-2021-infoxlm,
  title = "{I}nfo{XLM}: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training",
  author={Chi, Zewen and Dong, Li and Wei, Furu and Yang, Nan and Singhal, Saksham and Wang, Wenhui and Song, Xia and Mao, Xian-Ling and Huang, Heyan and Zhou, Ming},
  booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
  month = jun,
  year = "2021",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://aclanthology.org/2021.naacl-main.280",
  doi = "10.18653/v1/2021.naacl-main.280",
  pages = "3576--3588",}
```