Support for `attention_mask` in forward pass.
Browse filesThis commit implements the following:
- Cleans up unused arguments and definitions.
- Adds support for `attention_mask`.
- Adds support for cached inference.
- README.md +1 -1
- config.json +0 -9
- configuration_mixformer_sequential.py +0 -6
- modeling_mixformer_sequential.py +297 -306
README.md
CHANGED
@@ -118,7 +118,7 @@ text = tokenizer.batch_decode(outputs)[0]
|
|
118 |
print(text)
|
119 |
```
|
120 |
|
121 |
-
**Remark.** In the generation function, our model currently does not support beam search (`num_beams` >1)
|
122 |
Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings (instead of the model's).
|
123 |
|
124 |
### Citation
|
|
|
118 |
print(text)
|
119 |
```
|
120 |
|
121 |
+
**Remark.** In the generation function, our model currently does not support beam search (`num_beams` >1).
|
122 |
Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings (instead of the model's).
|
123 |
|
124 |
### Citation
|
config.json
CHANGED
@@ -1,13 +1,6 @@
|
|
1 |
{
|
2 |
"_name_or_path": "phi-1.5-half",
|
3 |
"activation_function": "gelu_new",
|
4 |
-
"architecture": {
|
5 |
-
"block_cls": "parallel",
|
6 |
-
"mixer": {},
|
7 |
-
"mlp": {
|
8 |
-
"mlp_cls": "mlp"
|
9 |
-
}
|
10 |
-
},
|
11 |
"architectures": [
|
12 |
"MixFormerSequentialForCausalLM"
|
13 |
],
|
@@ -15,7 +8,6 @@
|
|
15 |
"AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
|
16 |
"AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
|
17 |
},
|
18 |
-
"embd_layer": "default",
|
19 |
"embd_pdrop": 0.0,
|
20 |
"initializer_range": 0.02,
|
21 |
"layer_norm_epsilon": 1e-05,
|
@@ -25,7 +17,6 @@
|
|
25 |
"n_inner": null,
|
26 |
"n_layer": 24,
|
27 |
"n_positions": 2048,
|
28 |
-
"phyagi_version": "0.0.4.dev",
|
29 |
"resid_pdrop": 0.0,
|
30 |
"rotary_dim": 32,
|
31 |
"tie_word_embeddings": false,
|
|
|
1 |
{
|
2 |
"_name_or_path": "phi-1.5-half",
|
3 |
"activation_function": "gelu_new",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"architectures": [
|
5 |
"MixFormerSequentialForCausalLM"
|
6 |
],
|
|
|
8 |
"AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
|
9 |
"AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
|
10 |
},
|
|
|
11 |
"embd_pdrop": 0.0,
|
12 |
"initializer_range": 0.02,
|
13 |
"layer_norm_epsilon": 1e-05,
|
|
|
17 |
"n_inner": null,
|
18 |
"n_layer": 24,
|
19 |
"n_positions": 2048,
|
|
|
20 |
"resid_pdrop": 0.0,
|
21 |
"rotary_dim": 32,
|
22 |
"tie_word_embeddings": false,
|
configuration_mixformer_sequential.py
CHANGED
@@ -17,8 +17,6 @@ class MixFormerSequentialConfig(PretrainedConfig):
|
|
17 |
"hidden_size": "n_embd",
|
18 |
"num_attention_heads": "n_head",
|
19 |
"num_hidden_layers": "n_layer",
|
20 |
-
"input_emb_layer": "embd_layer", # `input_emb_layer` key is for backward compatibility
|
21 |
-
"blocks": "architecture", # `blocks` key is for backward compatibility
|
22 |
}
|
23 |
|
24 |
def __init__(
|
@@ -31,8 +29,6 @@ class MixFormerSequentialConfig(PretrainedConfig):
|
|
31 |
n_head: Optional[int] = 16,
|
32 |
rotary_dim: Optional[int] = 32,
|
33 |
activation_function: Optional[str] = "gelu_new",
|
34 |
-
embd_layer: Optional[str] = "default",
|
35 |
-
architecture: Union[Dict[str, Any], List[Dict[str, Any]]] = None,
|
36 |
embd_pdrop: Optional[float] = 0.0,
|
37 |
resid_pdrop: Optional[float] = 0.0,
|
38 |
layer_norm_epsilon: Optional[float] = 1e-5,
|
@@ -49,8 +45,6 @@ class MixFormerSequentialConfig(PretrainedConfig):
|
|
49 |
self.n_head = n_head
|
50 |
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
51 |
self.activation_function = activation_function
|
52 |
-
self.embd_layer = embd_layer
|
53 |
-
self.architecture = architecture
|
54 |
self.embd_pdrop = embd_pdrop
|
55 |
self.resid_pdrop = resid_pdrop
|
56 |
self.layer_norm_epsilon = layer_norm_epsilon
|
|
|
17 |
"hidden_size": "n_embd",
|
18 |
"num_attention_heads": "n_head",
|
19 |
"num_hidden_layers": "n_layer",
|
|
|
|
|
20 |
}
|
21 |
|
22 |
def __init__(
|
|
|
29 |
n_head: Optional[int] = 16,
|
30 |
rotary_dim: Optional[int] = 32,
|
31 |
activation_function: Optional[str] = "gelu_new",
|
|
|
|
|
32 |
embd_pdrop: Optional[float] = 0.0,
|
33 |
resid_pdrop: Optional[float] = 0.0,
|
34 |
layer_norm_epsilon: Optional[float] = 1e-5,
|
|
|
45 |
self.n_head = n_head
|
46 |
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
47 |
self.activation_function = activation_function
|
|
|
|
|
48 |
self.embd_pdrop = embd_pdrop
|
49 |
self.resid_pdrop = resid_pdrop
|
50 |
self.layer_norm_epsilon = layer_norm_epsilon
|
modeling_mixformer_sequential.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# Copyright (c) Microsoft Corporation.
|
2 |
# Licensed under the MIT license.
|
3 |
-
|
4 |
# BSD 3-Clause License
|
5 |
#
|
6 |
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
@@ -50,16 +50,38 @@ from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
|
50 |
|
51 |
@dataclass
|
52 |
class InferenceParams:
|
53 |
-
"""Inference parameters
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
class Embedding(nn.Module):
|
@@ -80,14 +102,19 @@ class Embedding(nn.Module):
|
|
80 |
|
81 |
return hidden_states
|
82 |
|
|
|
83 |
class RotaryEmbedding(nn.Module):
|
84 |
-
"""
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def __init__(
|
88 |
self,
|
89 |
dim: int,
|
90 |
-
base:
|
91 |
scale_base: Optional[float] = None,
|
92 |
device: Optional[str] = None,
|
93 |
**kwargs,
|
@@ -119,7 +146,7 @@ class RotaryEmbedding(nn.Module):
|
|
119 |
self._cos_k_cached = None
|
120 |
self._sin_k_cached = None
|
121 |
|
122 |
-
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset:
|
123 |
# Reset the tables if the sequence length has changed,
|
124 |
# or if we're on a new device (possibly due to tracing for instance)
|
125 |
seqlen = x.shape[1] + seqlen_offset
|
@@ -153,7 +180,7 @@ class RotaryEmbedding(nn.Module):
|
|
153 |
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
154 |
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
155 |
|
156 |
-
def
|
157 |
self,
|
158 |
qkv: torch.FloatTensor,
|
159 |
sin: torch.FloatTensor,
|
@@ -189,7 +216,6 @@ class RotaryEmbedding(nn.Module):
|
|
189 |
|
190 |
# Computes the new keys and queries, recasting to original dtype
|
191 |
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
192 |
-
|
193 |
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
194 |
|
195 |
return torch.cat(
|
@@ -202,47 +228,9 @@ class RotaryEmbedding(nn.Module):
|
|
202 |
)
|
203 |
|
204 |
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
205 |
-
|
206 |
-
|
207 |
-
Args:
|
208 |
-
qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
|
209 |
-
seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.
|
210 |
-
|
211 |
-
Returns:
|
212 |
-
New `qkv` and the cached sinusoids.
|
213 |
-
|
214 |
-
"""
|
215 |
-
|
216 |
self._update_cos_sin_cache(qkv, seqlen_offset)
|
217 |
-
|
218 |
-
return self.apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
|
219 |
-
|
220 |
-
def _update_kv_cache(kv, inference_params, layer_idx):
|
221 |
-
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
222 |
-
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
223 |
-
# Pre-allocate memory for key-values for inference.
|
224 |
-
num_heads, head_dim = kv.shape[-2:]
|
225 |
-
if layer_idx not in inference_params.key_value_memory_dict:
|
226 |
-
kv_cache = torch.empty(
|
227 |
-
inference_params.max_batch_size, inference_params.max_sequence_len, 2,
|
228 |
-
num_heads, head_dim, dtype=kv.dtype, device=kv.device
|
229 |
-
)
|
230 |
-
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
231 |
-
else:
|
232 |
-
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
233 |
-
|
234 |
-
# Adjust key and value for inference
|
235 |
-
batch_start = inference_params.batch_size_offset
|
236 |
-
batch_end = batch_start + kv.shape[0]
|
237 |
-
sequence_start = inference_params.sequence_len_offset
|
238 |
-
sequence_end = sequence_start + kv.shape[1]
|
239 |
-
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
|
240 |
-
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
|
241 |
-
|
242 |
-
assert kv_cache is not None
|
243 |
-
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
244 |
-
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
245 |
-
return kv
|
246 |
|
247 |
|
248 |
class MLP(nn.Module):
|
@@ -267,17 +255,6 @@ class MLP(nn.Module):
|
|
267 |
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
268 |
self.act = ACT2FN[act_fn]
|
269 |
|
270 |
-
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
271 |
-
old_keys = [prefix + "fc_in.weight", prefix + "fc_out.weight", prefix + "fc_in.bias", prefix + "fc_out.bias"]
|
272 |
-
new_keys = [prefix + "fc1.weight", prefix + "fc2.weight", prefix + "fc1.bias", prefix + "fc2.bias"]
|
273 |
-
|
274 |
-
if all(k in state_dict for k in old_keys) and not all(k in state_dict for k in new_keys):
|
275 |
-
# Older version of `MLP` saved with different key names.
|
276 |
-
for old_key, new_key in zip(old_keys, new_keys):
|
277 |
-
state_dict[new_key] = state_dict.pop(old_key)
|
278 |
-
|
279 |
-
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
280 |
-
|
281 |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
282 |
hidden_states = self.fc1(hidden_states)
|
283 |
hidden_states = self.act(hidden_states)
|
@@ -286,132 +263,114 @@ class MLP(nn.Module):
|
|
286 |
return hidden_states
|
287 |
|
288 |
|
289 |
-
class
|
290 |
-
"""
|
291 |
-
|
292 |
Reference:
|
293 |
-
https://github.com/
|
294 |
|
295 |
"""
|
296 |
-
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None,
|
297 |
-
raise_on_missing: bool = False) -> None:
|
298 |
-
super().__init__()
|
299 |
-
|
300 |
-
act_fn = config.activation_function if act_fn is None else act_fn
|
301 |
-
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
302 |
-
|
303 |
-
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
304 |
-
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
305 |
-
|
306 |
-
gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"]
|
307 |
-
activation = "gelu_approx" if act_fn in gelu_activations else "relu"
|
308 |
-
|
309 |
-
self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
|
310 |
-
|
311 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
312 |
-
return self.mlp(hidden_states)
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
(default: 1/sqrt(d_keys) where d_keys is computed at
|
321 |
-
runtime)
|
322 |
-
attention_dropout: The dropout rate to apply to the attention
|
323 |
-
(default: 0.0)
|
324 |
-
"""
|
325 |
-
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
326 |
super().__init__()
|
|
|
327 |
self.causal = causal
|
328 |
self.softmax_scale = softmax_scale
|
329 |
self.drop = nn.Dropout(attention_dropout)
|
330 |
|
331 |
-
def forward(
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
False means to mask out. (B, S)
|
339 |
-
"""
|
340 |
-
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
341 |
causal = self.causal if causal is None else causal
|
|
|
342 |
q, k, v = qkv.unbind(dim=2)
|
|
|
343 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
344 |
-
scores = torch.einsum(
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
padding_mask.masked_fill_(
|
349 |
-
|
350 |
-
scores = scores + rearrange(padding_mask,
|
|
|
351 |
if causal:
|
352 |
-
|
353 |
-
# So we have to construct the mask in float
|
354 |
-
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
355 |
-
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
356 |
scores = scores + causal_mask.to(dtype=scores.dtype)
|
|
|
357 |
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
358 |
-
|
359 |
-
|
|
|
|
|
360 |
return output
|
361 |
|
362 |
|
363 |
class CrossAttention(nn.Module):
|
364 |
-
"""
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
(default: 1/sqrt(d_keys) where d_keys is computed at
|
370 |
-
runtime)
|
371 |
-
attention_dropout: The dropout rate to apply to the attention
|
372 |
-
(default: 0.0)
|
373 |
"""
|
374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
super().__init__()
|
|
|
376 |
self.causal = causal
|
377 |
self.softmax_scale = softmax_scale
|
378 |
self.drop = nn.Dropout(attention_dropout)
|
379 |
|
380 |
-
def forward(
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
False means to mask out. (B, Sk)
|
389 |
-
"""
|
390 |
-
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
391 |
causal = self.causal if causal is None else causal
|
392 |
-
|
393 |
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
|
|
|
|
|
394 |
k, v = kv.unbind(dim=2)
|
|
|
395 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
396 |
-
scores = torch.einsum(
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
padding_mask.masked_fill_(
|
401 |
-
|
402 |
-
scores = scores + rearrange(padding_mask,
|
|
|
403 |
if causal:
|
404 |
-
|
405 |
-
# So we have to construct the mask in float
|
406 |
-
causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
|
407 |
-
device=scores.device), 1)
|
408 |
-
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
409 |
scores = scores + causal_mask.to(dtype=scores.dtype)
|
|
|
410 |
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
411 |
-
|
412 |
-
|
|
|
|
|
413 |
return output
|
414 |
|
|
|
415 |
def find_mha_dims(
|
416 |
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
|
417 |
) -> Tuple[int, int]:
|
@@ -445,152 +404,163 @@ def find_mha_dims(
|
|
445 |
return n_head, head_dim
|
446 |
|
447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
class MHA(nn.Module):
|
449 |
-
"""Multi-head attention layer.
|
450 |
-
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
451 |
|
452 |
def __init__(
|
453 |
self,
|
454 |
config: PretrainedConfig,
|
|
|
|
|
455 |
rotary_dim: Optional[int] = None,
|
|
|
456 |
n_head: Optional[int] = None,
|
457 |
head_dim: Optional[int] = None,
|
458 |
-
bias:
|
459 |
-
|
460 |
softmax_scale: Optional[float] = None,
|
461 |
-
|
462 |
layer_idx: Optional[int] = None,
|
463 |
-
|
464 |
-
|
465 |
-
checkpointing: Optional[bool] = False,
|
466 |
-
device: Optional[str] = None,
|
467 |
-
dtype: Optional[torch.dtype] = None,
|
468 |
-
fused_dense: Optional[bool] = True,
|
469 |
-
flash_attn: Optional[bool] = True,
|
470 |
-
cutlass_attn: Optional[bool] = False,
|
471 |
-
flash_rotary: Optional[bool] = True,
|
472 |
-
raise_on_missing: Optional[bool] = False
|
473 |
) -> None:
|
474 |
super().__init__()
|
475 |
|
476 |
-
|
477 |
-
n_head, head_dim = find_mha_dims(config, n_head, head_dim)
|
478 |
-
|
479 |
-
self.hidden_size = config.n_embd
|
480 |
-
self.n_head = n_head
|
481 |
-
self.head_dim = head_dim
|
482 |
-
self.op_size = n_head * head_dim
|
483 |
-
|
484 |
-
self.causal = causal
|
485 |
-
self.layer_idx = layer_idx
|
486 |
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
487 |
-
self.fused_dense = fused_dense
|
488 |
-
self.flash_attn = flash_attn
|
489 |
-
self.cutlass_attn = cutlass_attn
|
490 |
-
self.flash_rotary = flash_rotary
|
491 |
-
self.return_residual = return_residual
|
492 |
-
self.checkpointing = checkpointing
|
493 |
-
|
494 |
if self.rotary_emb_dim > 0:
|
495 |
rotary_kwargs = {"device": device}
|
496 |
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
|
497 |
rotary_kwargs["scale_base"] = rotary_emb_scale_base
|
498 |
-
|
499 |
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
500 |
-
|
501 |
-
|
|
|
|
|
|
|
502 |
|
503 |
-
self.Wqkv = nn.Linear(
|
504 |
-
self.out_proj = nn.Linear(
|
505 |
|
|
|
506 |
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
507 |
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
514 |
-
|
515 |
-
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
516 |
|
517 |
def forward(
|
518 |
self,
|
519 |
x: torch.FloatTensor,
|
520 |
-
|
521 |
-
|
522 |
cu_seqlens: Optional[torch.LongTensor] = None,
|
523 |
max_seqlen: Optional[int] = None,
|
524 |
-
|
525 |
-
past_cache: Optional[InferenceParams] = None,
|
526 |
-
**kwargs
|
527 |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
528 |
-
"""Perform the forward pass.
|
529 |
-
|
530 |
-
Args:
|
531 |
-
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
532 |
-
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
533 |
-
is the is the sum of the sequence lengths in the batch.
|
534 |
-
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
535 |
-
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
536 |
-
(batch, seqlen). Only applicable when not using FlashAttention.
|
537 |
-
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
538 |
-
of the sequences in the batch, used to index into x. Only applicable when using
|
539 |
-
FlashAttention.
|
540 |
-
max_seqlen: int. Maximum sequence length in the batch.
|
541 |
-
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
542 |
-
before applying the query projection. Useful for e.g., ViT where we only care
|
543 |
-
about the CLS token in the last layer.
|
544 |
-
past_cache: For generation only.
|
545 |
-
|
546 |
-
Returns:
|
547 |
-
(batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
|
548 |
-
else (total, hidden_dim) where total is the is the sum of the sequence lengths
|
549 |
-
in the batch.
|
550 |
-
|
551 |
-
"""
|
552 |
-
|
553 |
-
if cu_seqlens is not None:
|
554 |
-
assert max_seqlen is not None
|
555 |
-
assert key_padding_mask is None
|
556 |
-
assert self.flash_attn
|
557 |
-
assert self.rotary_emb_dim == 0
|
558 |
-
|
559 |
-
if key_padding_mask is not None:
|
560 |
-
assert cu_seqlens is None
|
561 |
-
assert max_seqlen is None
|
562 |
-
assert not self.flash_attn
|
563 |
-
|
564 |
-
if past_cache is not None:
|
565 |
-
assert key_padding_mask is None
|
566 |
-
assert cu_seqlens is None and max_seqlen is None
|
567 |
-
|
568 |
-
attn_kwargs = {"key_padding_mask": key_padding_mask}
|
569 |
-
|
570 |
-
assert x_kv is None and mixer_subset is None
|
571 |
-
|
572 |
qkv = self.Wqkv(x)
|
573 |
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
574 |
|
575 |
-
if
|
576 |
-
|
577 |
-
|
578 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
580 |
else:
|
581 |
-
if self.rotary_emb_dim > 0:
|
582 |
-
qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
|
583 |
q = qkv[:, :, 0]
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
|
590 |
-
|
591 |
-
out = self.out_proj(out)
|
592 |
|
593 |
-
return out if not self.return_residual else (out, x)
|
594 |
|
595 |
class ParallelBlock(nn.Module):
|
596 |
"""Parallel block.
|
@@ -602,8 +572,6 @@ class ParallelBlock(nn.Module):
|
|
602 |
def __init__(
|
603 |
self,
|
604 |
config: PretrainedConfig,
|
605 |
-
mixer: Optional[Dict[str, Any]] = None,
|
606 |
-
mlp: Optional[Dict[str, Any]] = None,
|
607 |
block_idx: Optional[int] = None,
|
608 |
) -> None:
|
609 |
super().__init__()
|
@@ -612,19 +580,20 @@ class ParallelBlock(nn.Module):
|
|
612 |
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
613 |
self.block_idx = block_idx
|
614 |
|
615 |
-
self.mixer = MHA(config
|
616 |
-
|
617 |
-
if mlp_cls == 'fused_mlp':
|
618 |
-
self.mlp = FusedMLP(config=config, **mlp)
|
619 |
-
else:
|
620 |
-
self.mlp = MLP(config=config, **mlp)
|
621 |
|
622 |
-
def forward(
|
623 |
-
|
|
|
|
|
|
|
|
|
|
|
624 |
residual = hidden_states
|
625 |
hidden_states = self.ln(hidden_states)
|
626 |
|
627 |
-
attn_outputs = self.mixer(hidden_states,
|
628 |
if isinstance(attn_outputs, tuple):
|
629 |
attn_outputs = attn_outputs[0]
|
630 |
|
@@ -635,6 +604,7 @@ class ParallelBlock(nn.Module):
|
|
635 |
|
636 |
return hidden_states
|
637 |
|
|
|
638 |
class CausalLMHead(nn.Module):
|
639 |
"""Causal Language Modeling head.
|
640 |
|
@@ -666,7 +636,7 @@ class CausalLMLoss(nn.Module):
|
|
666 |
|
667 |
"""
|
668 |
|
669 |
-
def __init__(self, shift_labels:
|
670 |
super().__init__()
|
671 |
|
672 |
self.shift_labels = shift_labels
|
@@ -681,6 +651,7 @@ class CausalLMLoss(nn.Module):
|
|
681 |
|
682 |
return loss
|
683 |
|
|
|
684 |
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
685 |
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
686 |
|
@@ -691,9 +662,35 @@ class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
|
691 |
def __init__(self, *inputs, **kwargs) -> None:
|
692 |
super().__init__(*inputs, **kwargs)
|
693 |
|
694 |
-
def
|
695 |
-
if
|
696 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
697 |
|
698 |
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
699 |
past_key_values = InferenceParams(
|
@@ -705,11 +702,15 @@ class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
|
705 |
key_value_memory_dict={},
|
706 |
)
|
707 |
else:
|
708 |
-
#
|
709 |
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
|
710 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
711 |
|
712 |
-
return {
|
|
|
|
|
|
|
|
|
713 |
|
714 |
|
715 |
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
@@ -723,23 +724,7 @@ class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
|
723 |
super().__init__(config)
|
724 |
|
725 |
modules = [Embedding(config)]
|
726 |
-
|
727 |
-
|
728 |
-
if not isinstance(block_config, list):
|
729 |
-
block_config = [block_config for _ in range(config.n_layer)]
|
730 |
-
|
731 |
-
if config.n_layer != len(block_config):
|
732 |
-
config.n_layer = len(block_config)
|
733 |
-
|
734 |
-
for block_idx, block in enumerate(block_config):
|
735 |
-
# `block_cls` with `legacy` value is for backward compatibility
|
736 |
-
# `path` key is for backward compatibility
|
737 |
-
block = copy.deepcopy(block) or {"block_cls": "parallel"}
|
738 |
-
block_cls = block.pop("path", None) or block.pop("block_cls", None)
|
739 |
-
|
740 |
-
block["block_idx"] = block_idx
|
741 |
-
modules.append(ParallelBlock(config, **block))
|
742 |
-
|
743 |
modules.append(CausalLMHead(config))
|
744 |
|
745 |
self.layers = nn.Sequential(*modules)
|
@@ -760,20 +745,26 @@ class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
|
760 |
self.layers[-1].linear = new_embeddings
|
761 |
|
762 |
def forward(
|
763 |
-
self,
|
764 |
-
|
|
|
|
|
|
|
|
|
765 |
) -> CausalLMOutputWithPast:
|
|
|
|
|
766 |
|
767 |
-
if
|
768 |
lm_logits = self.layers(input_ids)
|
769 |
else:
|
770 |
hidden_layer = self.layers[0](input_ids)
|
771 |
for module in self.layers[1:-1]:
|
772 |
-
hidden_layer = module(hidden_layer,
|
773 |
lm_logits = self.layers[-1](hidden_layer)
|
774 |
|
775 |
loss = None
|
776 |
if labels is not None:
|
777 |
loss = self.loss(lm_logits, labels)
|
778 |
-
|
779 |
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|
|
|
1 |
# Copyright (c) Microsoft Corporation.
|
2 |
# Licensed under the MIT license.
|
3 |
+
#
|
4 |
# BSD 3-Clause License
|
5 |
#
|
6 |
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
|
|
50 |
|
51 |
@dataclass
|
52 |
class InferenceParams:
|
53 |
+
"""Inference parameters passed to model to efficiently calculate
|
54 |
+
and store context during inference.
|
55 |
+
|
56 |
+
Reference:
|
57 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
max_sequence_len: Maximum sequence length.
|
61 |
+
max_batch_size: Maximum batch size.
|
62 |
+
sequence_len_offset: Sequence length offset.
|
63 |
+
batch_size_offset: Batch size offset.
|
64 |
+
key_value_memory_dict: Key value memory dictionary.
|
65 |
+
fused_ft_kernel: Whether to use fused kernel for fast inference.
|
66 |
+
lengths_per_sample: Lengths per sample.
|
67 |
+
|
68 |
+
"""
|
69 |
+
|
70 |
+
max_sequence_len: int = field(metadata={"help": "Maximum sequence length."})
|
71 |
+
|
72 |
+
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
73 |
+
|
74 |
+
sequence_len_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
75 |
+
|
76 |
+
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
77 |
+
|
78 |
+
key_value_memory_dict: Dict[str, Any] = field(
|
79 |
+
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
80 |
+
)
|
81 |
+
|
82 |
+
fused_ft_kernel: bool = field(default=False, metadata={"help": "Whether to use fused kernel for fast inference."})
|
83 |
+
|
84 |
+
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
|
85 |
|
86 |
|
87 |
class Embedding(nn.Module):
|
|
|
102 |
|
103 |
return hidden_states
|
104 |
|
105 |
+
|
106 |
class RotaryEmbedding(nn.Module):
|
107 |
+
"""Rotary embeddings.
|
108 |
+
|
109 |
+
Reference:
|
110 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
|
111 |
+
|
112 |
+
"""
|
113 |
|
114 |
def __init__(
|
115 |
self,
|
116 |
dim: int,
|
117 |
+
base: int = 10000,
|
118 |
scale_base: Optional[float] = None,
|
119 |
device: Optional[str] = None,
|
120 |
**kwargs,
|
|
|
146 |
self._cos_k_cached = None
|
147 |
self._sin_k_cached = None
|
148 |
|
149 |
+
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: int = 0) -> None:
|
150 |
# Reset the tables if the sequence length has changed,
|
151 |
# or if we're on a new device (possibly due to tracing for instance)
|
152 |
seqlen = x.shape[1] + seqlen_offset
|
|
|
180 |
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
181 |
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
182 |
|
183 |
+
def _apply_rotary_emb_qkv(
|
184 |
self,
|
185 |
qkv: torch.FloatTensor,
|
186 |
sin: torch.FloatTensor,
|
|
|
216 |
|
217 |
# Computes the new keys and queries, recasting to original dtype
|
218 |
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
|
|
219 |
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
220 |
|
221 |
return torch.cat(
|
|
|
228 |
)
|
229 |
|
230 |
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
231 |
+
# `qkv` is of shape (batch, seqlen, 3, nheads, headdim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
self._update_cos_sin_cache(qkv, seqlen_offset)
|
233 |
+
return self._apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
|
236 |
class MLP(nn.Module):
|
|
|
255 |
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
256 |
self.act = ACT2FN[act_fn]
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
259 |
hidden_states = self.fc1(hidden_states)
|
260 |
hidden_states = self.act(hidden_states)
|
|
|
263 |
return hidden_states
|
264 |
|
265 |
|
266 |
+
class SelfAttention(nn.Module):
|
267 |
+
"""Self-attention layer (compatible with PyTorch).
|
268 |
+
|
269 |
Reference:
|
270 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
271 |
|
272 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
def __init__(
|
275 |
+
self,
|
276 |
+
causal: bool = True,
|
277 |
+
softmax_scale: Optional[float] = None,
|
278 |
+
attention_dropout: float = 0.0,
|
279 |
+
) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
super().__init__()
|
281 |
+
|
282 |
self.causal = causal
|
283 |
self.softmax_scale = softmax_scale
|
284 |
self.drop = nn.Dropout(attention_dropout)
|
285 |
|
286 |
+
def forward(
|
287 |
+
self,
|
288 |
+
qkv: torch.FloatTensor,
|
289 |
+
causal: bool = None,
|
290 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
291 |
+
**kwargs,
|
292 |
+
) -> torch.FloatTensor:
|
|
|
|
|
|
|
293 |
causal = self.causal if causal is None else causal
|
294 |
+
batch_size, seq_len = qkv.shape[0], qkv.shape[1]
|
295 |
q, k, v = qkv.unbind(dim=2)
|
296 |
+
|
297 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
298 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
299 |
+
|
300 |
+
if attention_mask is not None:
|
301 |
+
padding_mask = torch.full((batch_size, seq_len), -10000.0, dtype=scores.dtype, device=scores.device)
|
302 |
+
padding_mask.masked_fill_(attention_mask, 0.0)
|
303 |
+
|
304 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
305 |
+
|
306 |
if causal:
|
307 |
+
causal_mask = torch.triu(torch.full((seq_len, seq_len), -10000.0, device=scores.device), 1)
|
|
|
|
|
|
|
308 |
scores = scores + causal_mask.to(dtype=scores.dtype)
|
309 |
+
|
310 |
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
311 |
+
attention = self.drop(attention)
|
312 |
+
|
313 |
+
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
314 |
+
|
315 |
return output
|
316 |
|
317 |
|
318 |
class CrossAttention(nn.Module):
|
319 |
+
"""Cross-attention layer (compatible with PyTorch).
|
320 |
+
|
321 |
+
Reference:
|
322 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
323 |
+
|
|
|
|
|
|
|
|
|
324 |
"""
|
325 |
+
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
causal: bool = True,
|
329 |
+
softmax_scale: Optional[float] = None,
|
330 |
+
attention_dropout: float = 0.0,
|
331 |
+
) -> None:
|
332 |
super().__init__()
|
333 |
+
|
334 |
self.causal = causal
|
335 |
self.softmax_scale = softmax_scale
|
336 |
self.drop = nn.Dropout(attention_dropout)
|
337 |
|
338 |
+
def forward(
|
339 |
+
self,
|
340 |
+
q: torch.FloatTensor,
|
341 |
+
kv: torch.FloatTensor,
|
342 |
+
causal: bool = None,
|
343 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
344 |
+
**kwargs,
|
345 |
+
) -> torch.FloatTensor:
|
|
|
|
|
|
|
346 |
causal = self.causal if causal is None else causal
|
347 |
+
batch_size, seq_len_q = q.shape[0], q.shape[1]
|
348 |
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
|
349 |
+
|
350 |
+
seq_len_k = kv.shape[1]
|
351 |
k, v = kv.unbind(dim=2)
|
352 |
+
|
353 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
354 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
355 |
+
|
356 |
+
if attention_mask is not None:
|
357 |
+
padding_mask = torch.full((batch_size, seq_len_k), -10000.0, dtype=scores.dtype, device=scores.device)
|
358 |
+
padding_mask.masked_fill_(attention_mask, 0.0)
|
359 |
+
|
360 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
361 |
+
|
362 |
if causal:
|
363 |
+
causal_mask = torch.triu(torch.full((seq_len_q, seq_len_k), -10000.0, device=scores.device), 1)
|
|
|
|
|
|
|
|
|
364 |
scores = scores + causal_mask.to(dtype=scores.dtype)
|
365 |
+
|
366 |
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
367 |
+
attention = self.drop(attention)
|
368 |
+
|
369 |
+
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
370 |
+
|
371 |
return output
|
372 |
|
373 |
+
|
374 |
def find_mha_dims(
|
375 |
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
|
376 |
) -> Tuple[int, int]:
|
|
|
404 |
return n_head, head_dim
|
405 |
|
406 |
|
407 |
+
def update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
|
408 |
+
"""Update the key-value cache for inference.
|
409 |
+
|
410 |
+
Reference:
|
411 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
412 |
+
|
413 |
+
Args:
|
414 |
+
kv: Key-value tensor.
|
415 |
+
inference_params: Inference parameters.
|
416 |
+
layer_idx: Layer index.
|
417 |
+
|
418 |
+
Returns:
|
419 |
+
Updated key-value tensor.
|
420 |
+
|
421 |
+
"""
|
422 |
+
|
423 |
+
num_heads, head_dim = kv.shape[-2:]
|
424 |
+
|
425 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
426 |
+
kv_cache = torch.empty(
|
427 |
+
inference_params.max_batch_size,
|
428 |
+
inference_params.max_sequence_len,
|
429 |
+
2,
|
430 |
+
num_heads,
|
431 |
+
head_dim,
|
432 |
+
dtype=kv.dtype,
|
433 |
+
device=kv.device,
|
434 |
+
)
|
435 |
+
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
436 |
+
else:
|
437 |
+
if not inference_params.fused_ft_kernel:
|
438 |
+
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
439 |
+
else:
|
440 |
+
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
|
441 |
+
kv_cache = None
|
442 |
+
|
443 |
+
batch_start = inference_params.batch_size_offset
|
444 |
+
batch_end = batch_start + kv.shape[0]
|
445 |
+
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
|
446 |
+
|
447 |
+
sequence_start = inference_params.sequence_len_offset
|
448 |
+
sequence_end = sequence_start + kv.shape[1]
|
449 |
+
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
|
450 |
+
|
451 |
+
if not inference_params.fused_ft_kernel:
|
452 |
+
assert kv_cache is not None
|
453 |
+
|
454 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
455 |
+
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
456 |
+
|
457 |
+
return kv
|
458 |
+
|
459 |
+
assert inference_params.sequence_len_offset == 0
|
460 |
+
assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32]
|
461 |
+
|
462 |
+
packsize = 4 if kv.dtype == torch.float32 else 8
|
463 |
+
|
464 |
+
if kv_cache is not None:
|
465 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
466 |
+
k_cache = rearrange(kv_cache[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize).contiguous()
|
467 |
+
v_cache = rearrange(kv_cache[:, :, 1], "b s h d -> b h s d").contiguous()
|
468 |
+
inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache)
|
469 |
+
else:
|
470 |
+
k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange(
|
471 |
+
kv[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize
|
472 |
+
)
|
473 |
+
v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(kv[:, :, 1], "b s h d -> b h s d")
|
474 |
+
|
475 |
+
return kv
|
476 |
+
|
477 |
+
|
478 |
class MHA(nn.Module):
|
479 |
+
"""Multi-head attention layer."""
|
|
|
480 |
|
481 |
def __init__(
|
482 |
self,
|
483 |
config: PretrainedConfig,
|
484 |
+
dtype: Optional[torch.dtype] = None,
|
485 |
+
device: Optional[str] = None,
|
486 |
rotary_dim: Optional[int] = None,
|
487 |
+
rotary_emb_scale_base: Optional[float] = None,
|
488 |
n_head: Optional[int] = None,
|
489 |
head_dim: Optional[int] = None,
|
490 |
+
bias: bool = True,
|
491 |
+
causal: bool = True,
|
492 |
softmax_scale: Optional[float] = None,
|
493 |
+
dropout: float = 0.0,
|
494 |
layer_idx: Optional[int] = None,
|
495 |
+
return_residual: bool = False,
|
496 |
+
checkpointing: bool = False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
) -> None:
|
498 |
super().__init__()
|
499 |
|
500 |
+
# Rotary embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
if self.rotary_emb_dim > 0:
|
503 |
rotary_kwargs = {"device": device}
|
504 |
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
|
505 |
rotary_kwargs["scale_base"] = rotary_emb_scale_base
|
|
|
506 |
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
507 |
+
|
508 |
+
# MLP
|
509 |
+
self.n_head, self.head_dim = find_mha_dims(config, n_head, head_dim)
|
510 |
+
op_size = self.n_head * self.head_dim
|
511 |
+
hidden_size = config.n_embd
|
512 |
|
513 |
+
self.Wqkv = nn.Linear(hidden_size, 3 * op_size, bias=bias, device=device, dtype=dtype)
|
514 |
+
self.out_proj = nn.Linear(op_size, hidden_size, bias=bias, device=device, dtype=dtype)
|
515 |
|
516 |
+
# Attention
|
517 |
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
518 |
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
519 |
|
520 |
+
self.layer_idx = layer_idx
|
521 |
+
self.return_residual = return_residual
|
522 |
+
self.checkpointing = checkpointing
|
|
|
|
|
|
|
|
|
523 |
|
524 |
def forward(
|
525 |
self,
|
526 |
x: torch.FloatTensor,
|
527 |
+
past_key_values: Optional[InferenceParams] = None,
|
528 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
529 |
cu_seqlens: Optional[torch.LongTensor] = None,
|
530 |
max_seqlen: Optional[int] = None,
|
531 |
+
**kwargs,
|
|
|
|
|
532 |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
qkv = self.Wqkv(x)
|
534 |
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
535 |
|
536 |
+
seqlen_offset = past_key_values.sequence_len_offset if past_key_values is not None else 0
|
537 |
+
if self.rotary_emb_dim > 0:
|
538 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset)
|
539 |
+
|
540 |
+
if past_key_values is not None:
|
541 |
+
kv = update_kv_cache(qkv[:, :, 1:], past_key_values, self.layer_idx)
|
542 |
+
|
543 |
+
if attention_mask is not None:
|
544 |
+
attention_mask, cu_seqlens, max_seqlen = attention_mask
|
545 |
+
attention_mask = attention_mask.to(qkv.device)
|
546 |
|
547 |
+
attention_kwargs = {"attention_mask": attention_mask}
|
548 |
+
|
549 |
+
if past_key_values is None or seqlen_offset == 0:
|
550 |
+
if self.checkpointing:
|
551 |
+
attn_output = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **attention_kwargs)
|
552 |
+
else:
|
553 |
+
attn_output = self.inner_attn(qkv, **attention_kwargs)
|
554 |
else:
|
|
|
|
|
555 |
q = qkv[:, :, 0]
|
556 |
+
causal = None if past_key_values.sequence_len_offset == 0 else False
|
557 |
+
attn_output = self.inner_cross_attn(q, kv, causal=causal, **attention_kwargs)
|
558 |
+
|
559 |
+
output = rearrange(attn_output, "... h d -> ... (h d)")
|
560 |
+
output = self.out_proj(output)
|
561 |
|
562 |
+
return output if not self.return_residual else (output, x)
|
|
|
563 |
|
|
|
564 |
|
565 |
class ParallelBlock(nn.Module):
|
566 |
"""Parallel block.
|
|
|
572 |
def __init__(
|
573 |
self,
|
574 |
config: PretrainedConfig,
|
|
|
|
|
575 |
block_idx: Optional[int] = None,
|
576 |
) -> None:
|
577 |
super().__init__()
|
|
|
580 |
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
581 |
self.block_idx = block_idx
|
582 |
|
583 |
+
self.mixer = MHA(config, layer_idx=block_idx)
|
584 |
+
self.mlp = MLP(config)
|
|
|
|
|
|
|
|
|
585 |
|
586 |
+
def forward(
|
587 |
+
self,
|
588 |
+
hidden_states: torch.FloatTensor,
|
589 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
590 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
591 |
+
**kwargs,
|
592 |
+
) -> torch.FloatTensor:
|
593 |
residual = hidden_states
|
594 |
hidden_states = self.ln(hidden_states)
|
595 |
|
596 |
+
attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask)
|
597 |
if isinstance(attn_outputs, tuple):
|
598 |
attn_outputs = attn_outputs[0]
|
599 |
|
|
|
604 |
|
605 |
return hidden_states
|
606 |
|
607 |
+
|
608 |
class CausalLMHead(nn.Module):
|
609 |
"""Causal Language Modeling head.
|
610 |
|
|
|
636 |
|
637 |
"""
|
638 |
|
639 |
+
def __init__(self, shift_labels: bool = True) -> None:
|
640 |
super().__init__()
|
641 |
|
642 |
self.shift_labels = shift_labels
|
|
|
651 |
|
652 |
return loss
|
653 |
|
654 |
+
|
655 |
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
656 |
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
657 |
|
|
|
662 |
def __init__(self, *inputs, **kwargs) -> None:
|
663 |
super().__init__(*inputs, **kwargs)
|
664 |
|
665 |
+
def _init_weights(self, module: nn.Module) -> None:
|
666 |
+
if isinstance(module, (nn.Linear,)):
|
667 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
668 |
+
if module.bias is not None:
|
669 |
+
module.bias.data.zero_()
|
670 |
+
elif isinstance(module, nn.Embedding):
|
671 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
672 |
+
if module.padding_idx is not None:
|
673 |
+
module.weight.data[module.padding_idx].zero_()
|
674 |
+
elif isinstance(module, nn.LayerNorm):
|
675 |
+
module.bias.data.zero_()
|
676 |
+
module.weight.data.fill_(1.0)
|
677 |
+
|
678 |
+
def prepare_inputs_for_generation(
|
679 |
+
self,
|
680 |
+
input_ids: torch.LongTensor,
|
681 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
682 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
683 |
+
**kwargs,
|
684 |
+
) -> Dict[str, Any]:
|
685 |
+
if attention_mask is not None and torch.any(~attention_mask.bool()):
|
686 |
+
total_seq_len = torch.sum(attention_mask, dim=1)
|
687 |
+
max_seq_len = torch.max(total_seq_len)
|
688 |
+
|
689 |
+
total_seq_len = torch.cat((torch.tensor([0], device=attention_mask.device), total_seq_len)).unsqueeze(1)
|
690 |
+
cumulative_seq_len = torch.cumsum(total_seq_len, dim=0).squeeze(1).to(torch.int32)
|
691 |
+
attention_mask = (attention_mask.bool(), cumulative_seq_len, max_seq_len.item())
|
692 |
+
else:
|
693 |
+
attention_mask = None
|
694 |
|
695 |
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
696 |
past_key_values = InferenceParams(
|
|
|
702 |
key_value_memory_dict={},
|
703 |
)
|
704 |
else:
|
705 |
+
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
706 |
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
|
707 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
708 |
|
709 |
+
return {
|
710 |
+
"input_ids": input_ids,
|
711 |
+
"past_key_values": past_key_values,
|
712 |
+
"attention_mask": attention_mask,
|
713 |
+
}
|
714 |
|
715 |
|
716 |
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
|
|
724 |
super().__init__(config)
|
725 |
|
726 |
modules = [Embedding(config)]
|
727 |
+
modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
728 |
modules.append(CausalLMHead(config))
|
729 |
|
730 |
self.layers = nn.Sequential(*modules)
|
|
|
745 |
self.layers[-1].linear = new_embeddings
|
746 |
|
747 |
def forward(
|
748 |
+
self,
|
749 |
+
input_ids: torch.LongTensor,
|
750 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
751 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
752 |
+
labels: Optional[torch.LongTensor] = None,
|
753 |
+
**kwargs,
|
754 |
) -> CausalLMOutputWithPast:
|
755 |
+
if attention_mask is not None and self.training:
|
756 |
+
raise ValueError("`attention_mask` is not supported during training.")
|
757 |
|
758 |
+
if past_key_values is None and attention_mask is None:
|
759 |
lm_logits = self.layers(input_ids)
|
760 |
else:
|
761 |
hidden_layer = self.layers[0](input_ids)
|
762 |
for module in self.layers[1:-1]:
|
763 |
+
hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask)
|
764 |
lm_logits = self.layers[-1](hidden_layer)
|
765 |
|
766 |
loss = None
|
767 |
if labels is not None:
|
768 |
loss = self.loss(lm_logits, labels)
|
769 |
+
|
770 |
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|