migtissera commited on
Commit
65583e1
·
verified ·
1 Parent(s): 03af4dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -3
README.md CHANGED
@@ -1,3 +1,106 @@
1
- ---
2
- license: llama3
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ ---
4
+
5
+ ![Tesoro](https://huggingface.co/migtissera/Tess-2.0-Mixtral-8x22B/resolve/main/Tess-2.png)
6
+
7
+ # Tess-2.0-Llama-3-8B
8
+ Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-2.0-Llama-3-8B was trained on the meta-llama/Meta-Llama-3-8B base.
9
+
10
+ # Prompt Format
11
+ Prompt format used for this fine-tune is Llama-3
12
+
13
+ ```
14
+ <|begin_of_text|><|start_header_id|>system<|end_header_id|>
15
+
16
+ You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
17
+
18
+ Who are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
19
+
20
+ I am an AI<|eot_id|><|start_header_id|>user<|end_header_id|>
21
+
22
+ What's your name?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
23
+ ```
24
+
25
+ # Training Methodology
26
+ Tess-2.0-Llama-3 was trained on the (still curating) Tess-2.0 dataset. Tess-2.0 dataset contains ~100K high-quality code and general training samples. The dataset is highly uncensored, hence the model will almost always follow instructions.
27
+
28
+ The model was only fine-tuned for 1-epoch with a low learning rate to try and preserve its entropy as much as possible.
29
+
30
+
31
+ # Sample code to run inference
32
+
33
+ ```python
34
+ import torch, json
35
+ from transformers import AutoModelForCausalLM, AutoTokenizer
36
+
37
+ model_path = "/home/migel/Tess-2.0-Llama-3-8B"
38
+ output_file_path = "/home/migel/conversations.jsonl"
39
+
40
+ model = AutoModelForCausalLM.from_pretrained(
41
+ model_path,
42
+ torch_dtype=torch.float16,
43
+ device_map="auto",
44
+ load_in_4bit=False,
45
+ trust_remote_code=False,
46
+ )
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
49
+
50
+ def generate_text(instruction):
51
+ tokens = tokenizer.encode(instruction)
52
+ tokens = torch.LongTensor(tokens).unsqueeze(0)
53
+ tokens = tokens.to("cuda")
54
+
55
+ instance = {
56
+ "input_ids": tokens,
57
+ "top_p": 1.0,
58
+ "temperature": 0.75,
59
+ "generate_len": 1024,
60
+ "top_k": 50,
61
+ }
62
+
63
+ length = len(tokens[0])
64
+ with torch.no_grad():
65
+ rest = model.generate(
66
+ input_ids=tokens,
67
+ max_length=length + instance["generate_len"],
68
+ use_cache=True,
69
+ do_sample=True,
70
+ top_p=instance["top_p"],
71
+ temperature=instance["temperature"],
72
+ top_k=instance["top_k"],
73
+ num_return_sequences=1,
74
+ pad_token_id=tokenizer.eos_token_id,
75
+ )
76
+ output = rest[0][length:]
77
+ string = tokenizer.decode(output, skip_special_tokens=True)
78
+ return f"{string}"
79
+
80
+ conversation = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are Tesoro, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"""
81
+
82
+
83
+ while True:
84
+ user_input = input("You: ")
85
+ llm_prompt = f"{conversation}{user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
86
+ answer = generate_text(llm_prompt)
87
+ print(answer)
88
+
89
+ conversation = f"{llm_prompt}{answer}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
90
+
91
+ json_data = {"prompt": user_input, "answer": answer}
92
+
93
+ with open(output_file_path, "a") as output_file:
94
+ output_file.write(json.dumps(json_data) + "\n")
95
+ ```
96
+
97
+ # Join My General AI Discord (NeuroLattice):
98
+ https://discord.gg/Hz6GrwGFKD
99
+
100
+ # Limitations & Biases:
101
+
102
+ While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
103
+
104
+ Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
105
+
106
+ Exercise caution and cross-check information when necessary. This is an uncensored model.