{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0c6247f870>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAANj09F63aJ8aTPPwzpM56otj2zHGTWa5bXkgZfFNtqq5eV93uuAVKwUT54mDUFMVSzPYMTxfrn/vBgKSBZCLmHuxmxMAEP/lukhvBd/qkbuFG3B2Vslh3APQW+rPog6OosXK1cgzi89r1W8CcHnA+wXOg0pCvcSB6K4kSQbo+rE1WwiBWDnQ8IzbP4YC8uzb7Z1a7SN52PmCfCXkrZoD+Esz8Bsq+jzqQV6BftKfdlEDwvJKvEuPiygNIOUYdCjf5bVpE8HnvGDbyK+3pJcd4FSXFDdlkMIUkJf6lpl2Wc6rEXxG1vgHe9vl17fcfcoWkHrXC1fFIzRoX6wdR5pJ6DmkuHcHbxVP5pJISsq4Pc+xGNBNtKUr3EP35UbAfiBoWmCYy/wkfuv78oeVG8l38TgISPBx0JLqgrQPQ8HaYTZSamIXYbsMjWUnap/l95IfHvxRVQJBRXMnOUsFIwuZHpSkpkGgLyinLK759bDeysX1XOQ7UbntkYS6u4SpVlNQ6vnQfg77tUUvXiBAARNsH4skq1ruF20yXN7Q0jNOrju7J+w0il1fr0Y0IA/vi7sNxEpQFlvl3k4t92WdJEb+TPgAa2GZXvN9Z5Zr1UPj50C3D64i3LS9tXZ3UOZWGBmYSsDpkYVAiPjF+v450VY4NlOtJlDql9ry2E/w93fh0Vl7dNBXdbhqY1rHvnELo72nLYOsFsEyVK+yWLPsz+DPQkRnvD1gtEVbWPNK/fJL+XoMjAAzX16fJldf6Ky0XC+Maa0Fpq6tsuVFaBl9Xh80GV+7SZ9UOJTC3OnwOF3ZiHx6cXHJqGOYAm9WAJhF5zXlSjt9uvlbsUJD7dEzgPDetJTCPnNfZ6LLISAyXdvPz3b/qmeXQl3bFKAaABzulc0F9eNZyS3USZ5Ub2Vdd8VtlhcnHjDrB93PUOY0xyH+A0foMdX90byznNnXSOTCHv2SgNr6eX/Z+oQ+SOGtxfOG308YA3u5h6ZZh48uwmfAR0v1mDswynx55i+Dvi47Ky3bam6XwTidoV+6RTAYSdIYccXuzyE7s1YbL6QiGrCrGYWB9mCj5YVL0bZpaP5PHW9/oIQE1fmANLGn8A9yu9E4YkTdeeW79yyhTQwFokUFiKGTHCMVk9Gz84xuQIBUSklmH6+ytR6swp0f9gDUZ0t4cSaGe8Bb7C5WO8+LEZ+Uz/2KbjMoKF3NtmSnnAA/vO3DB0elvLCxQ7VO1iS7uLn6CsNNbTj/v6CPgki3MqBx5PlhIyyxA+DBU73pb4UISnlVD98CzhwYHEKuOdsBvXjx+HsY0QAMbqBmGlDtPaLl9wHRD2G6xjpgR5WC0BGYUZYr4+HTpjGQHkPJYh/9ehLht67mIN7+5tejlz+3GYfFRFFajggo0xU6n/UHfU27c1riLqUvaqzcOhoharv6gTkMyFoQ4MuOIZ+ART9W0P8u/KtkUJQbLoiInhHrTLETN69iX3UjJP9WYjZZL+s1MbfQ20jZtDoT21h2gY/d7wNA6qQaqUUkC2/tpnwmKyqKVOxFhF5vLzDLcbzouSwEOHU34tBgytICA1TwFI+CK6cOLR71ljCYTHOgnuytGZUrFZcBIErpYoLPKXJrxhiXkAwpOrPPXLu/RgT/U6OLOfqvT2SW+9qMiUvDuljoyI03fR+6B3bWvzsIJV9fkb8IhZMlnX6tH4w2Wr2JxuxtoAKO6AHhp2SJlOe2VNhqDLQflnF9qyab+E67uubUY2MZG3Ezk7dJKAULNj4jhdUlTJzTUG9YDCkKGRCFvCnc9GiY2NG4s0rXcNBXu1R/vaJdHd5sizGpW3COHiRziRulKs0KIiOpxVIi2JukBkm6tX877k7VFEtM8PY4HxQpojeWBvHyjXu/3r5TswhtAaSOcmroBqfFbskmngA4HgbkwK4Eb15ApsYJzekeqWtr1a8x2B/kaADIPZlqplbgoOMpkraRD9TkFEkOIPRTizpskN/rqUA0HwLGVFtWd0BGdAFr5yL6bUVmp30KU02jhLnKwd6rpg5kRhrsK9AIhwUWYRmHgsjZ8RB1Nsv5BUBTC/QPvFjthnkPrX76Mhn65tYjx6FTmBX/FgrudDN1Dt+s92qOF0dqOiH52dFnTl2D1QdMFguZ+HJ9e3h7pwj6yUA3F0f1NHqj91eemFFuzYZlL29PUoEjQC1kfiP1L/LN0TT8xzEOCM/QmHrEq01HZ9zEBHLWjoE+6T0GJ5MpWEd1H0l8yciu6UyOGOGcyf93suA8dBgS0ZdiHf94JHGCqSUll9QLb9P3PSfqPVbwOrf8g4VE8MdZtQjCbvCfc9pPwNXTdxtGIUwdPRgyWrFWvVQiOzufCuQodriUGe7CmTBV77+XETdGXmCL0o+AxxidMtT4k7gdVZdybMX7a+Jwshu2OXlDNDLzG/RaF5FFQcx0+4y1XVaWhSOsM31fVhXRKuNlvIo7lCucPjfcI5l+falZ7w7Nu3uUOKA5TylVW+Letw5tB75gQybI5qQ5m5WxCumODjd/imc3K5nRRIwIeopjG0TAxdtv4UssczrOIhkCOubWlIU9RmjV1jxVUTbsJQ6Jikfj5DFfICjsBQghSK0dMI9KAhc2s+aU1rnHk37yM7RMoQGHqkMNFFadlYOIJuq04Gk69P4xE+UdL/41FAMW/blqBK41TeTTjofIeWtFiOC9DHkJdRtzCC1MPcyC/lWYiCt/AXyqbiwZl/8RhaR6+d+wc9PrhTwOzuabiv+7W+DtCwT7x+vJplld2DFKGgJCy/pkXiKxFGRybdTHzavKtWrTfb81aKkUQ0U6jQL3ECwnltxyyh0khWHx1z96y459UWIMBCqvCi4VSkPCzBzN0VAgRBL3bi7LohdV/gyMc2I+fFPjNYWlI8CYl7FKGvYll8ja/8ohKSlbVUhCEbk6O0owBOyvXuWVirFjxq+m6/Bamo+A1GHeN6xxe+WwgP35P+JyLwMAaB9DG+VbbeRRjhZL5ecSHTKuXfXSkIROMfKsTYQVOuKsb+A8uhqecHwhcWiTJpoEGZnbNbzydaALeUB+feQCzVion2QG1F0TI9vVQP+Q2KesufO3pD3pYXmfvcSut0ZMXub+7ABxfhyPE8UETR+mMgutcY7NRrZj2rNe1LKtGhDSEyHhjfbjL+hMFIMYuEoKlkszukQRsTtP067o9Wb0tsGRD59bPdJ8uqafBLCqQbNg2us5/ftALeOeENnLY+v/Jd5T+76YO5dftE2txD7FoGqFOWn/5SWodr9ctTSGRZYawN58muoLSwjbUHr5ORsB7ZvUYQBrgLSXKgMyiZAWiZxOWn824/I0ghwKTYOj/pRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)" }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 1, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673838327120879821, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": { ":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPZjh76YOJM9f+RBPl7rH75KsJo8tsm9OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg==" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsW1RZkOncUCUhpRSlIwBbJRNMQGMAXSUR0CkhoQkgOjJdX2UKGgGaAloD0MIb9kh/qH9cECUhpRSlGgVTSEBaBZHQKSHYngpBop1fZQoaAZoCWgPQwhMxca8jogWwJSGlFKUaBVL2WgWR0CkiApzcRDkdX2UKGgGaAloD0MIyH2rdeKpbUCUhpRSlGgVTSMBaBZHQKSI8PmxMWZ1fZQoaAZoCWgPQwhYHw99t1BwQJSGlFKUaBVNHgFoFkdApInZwhnrZHV9lChoBmgJaA9DCBU2A1wQIW1AlIaUUpRoFUv9aBZHQKSKoDTSb6R1fZQoaAZoCWgPQwhBuAIKdfhvQJSGlFKUaBVNCwFoFkdApI6CcG1QZXV9lChoBmgJaA9DCEjF/x0RrnBAlIaUUpRoFU03AWgWR0Ckj3vw3HaOdX2UKGgGaAloD0MIcefCSC80RkCUhpRSlGgVS+loFkdApJAzYTTOPnV9lChoBmgJaA9DCNWSjnIwBmVAlIaUUpRoFU3XAWgWR0CkkeFLeyiVdX2UKGgGaAloD0MIxVVl3xVFb0CUhpRSlGgVTUQBaBZHQKSS6x59mYl1fZQoaAZoCWgPQwj/eK9amQZGQJSGlFKUaBVLx2gWR0Ckk4OfNA1OdX2UKGgGaAloD0MIcy8wK1TNckCUhpRSlGgVTUkBaBZHQKSUj6t1ZDB1fZQoaAZoCWgPQwitiJroM7pxQJSGlFKUaBVNHwFoFkdApJhgi9qUNnV9lChoBmgJaA9DCO0NvjAZUG5AlIaUUpRoFU0nAWgWR0CkmUIMBp6AdX2UKGgGaAloD0MIQX+hRwy+cECUhpRSlGgVTRkBaBZHQKSaLnezlcR1fZQoaAZoCWgPQwhBD7VtmEVwQJSGlFKUaBVL/GgWR0CkmvN5UtI1dX2UKGgGaAloD0MIPdF14cfYcECUhpRSlGgVTSwBaBZHQKSb8fvnbIt1fZQoaAZoCWgPQwimJyzxwAdxQJSGlFKUaBVNSwFoFkdApJz4sbvPT3V9lChoBmgJaA9DCFpj0Amhjm5AlIaUUpRoFUv4aBZHQKSdurKeTV51fZQoaAZoCWgPQwi06J0KuK1xQJSGlFKUaBVL8mgWR0CkoX48U21ldX2UKGgGaAloD0MIw0gvanfrakCUhpRSlGgVS/poFkdApKI5Pj4pMHV9lChoBmgJaA9DCPG6fsHuNHJAlIaUUpRoFU0lAWgWR0CkoxX18LKFdX2UKGgGaAloD0MIhbTGoBOwcECUhpRSlGgVTQwBaBZHQKSj9/d69kB1fZQoaAZoCWgPQwib4nFRLUo1QJSGlFKUaBVL12gWR0CkpJayjYZmdX2UKGgGaAloD0MI/AEPDGAmcECUhpRSlGgVTQEBaBZHQKSlZXr+o991fZQoaAZoCWgPQwibIOo+wJNwQJSGlFKUaBVNJAFoFkdApKZIAXEZSHV9lChoBmgJaA9DCCYA/5QqKnBAlIaUUpRoFU0BAWgWR0Ckpwe5e7cxdX2UKGgGaAloD0MIgh3/BQIXbUCUhpRSlGgVTScBaBZHQKSrBiNsFdN1fZQoaAZoCWgPQwixFTQtsUZyQJSGlFKUaBVNSAFoFkdApKwOugYgq3V9lChoBmgJaA9DCCy4H/DAl25AlIaUUpRoFU0cAWgWR0CkrP9YOlO5dX2UKGgGaAloD0MIVTIAVPGvckCUhpRSlGgVTSgBaBZHQKSuRkc0cfh1fZQoaAZoCWgPQwiwV1hwP4ZLQJSGlFKUaBVL32gWR0Ckrys+NcW1dX2UKGgGaAloD0MIzAuwj041cECUhpRSlGgVS/poFkdApLA8/fO2RnV9lChoBmgJaA9DCJS/e0eN8nBAlIaUUpRoFU0UAWgWR0CksWOrIYFadX2UKGgGaAloD0MIAYi7epVGbUCUhpRSlGgVTQABaBZHQKS2qnJDE3t1fZQoaAZoCWgPQwhoQL0ZdadwQJSGlFKUaBVNIwFoFkdApLeTgn+hoXV9lChoBmgJaA9DCA73kVsT43FAlIaUUpRoFUv0aBZHQKS4UHJtBOZ1fZQoaAZoCWgPQwjSNZNvtiNMQJSGlFKUaBVL32gWR0CkuPNw71ZldX2UKGgGaAloD0MIr8+c9anZcECUhpRSlGgVTQcBaBZHQKS5u/wAlv91fZQoaAZoCWgPQwjM7zSZcfRxQJSGlFKUaBVNFgFoFkdApLqeIO6NEXV9lChoBmgJaA9DCJ7OFaWEN21AlIaUUpRoFUv/aBZHQKS7agRK6Fx1fZQoaAZoCWgPQwgkYHR5c9xwQJSGlFKUaBVNDgFoFkdApLxHD+BH1HV9lChoBmgJaA9DCOsCXmZYTW1AlIaUUpRoFU0MAWgWR0CkwB6zu4PPdX2UKGgGaAloD0MIpb3BFyYibkCUhpRSlGgVTRkBaBZHQKTA+SeRPoF1fZQoaAZoCWgPQwjVeyqnfcBxQJSGlFKUaBVNNQFoFkdApMHyoGY8dXV9lChoBmgJaA9DCMJoVraPRG1AlIaUUpRoFUvyaBZHQKTCu+6iCat1fZQoaAZoCWgPQwghyazeIexxQJSGlFKUaBVL5mgWR0Ckw22DpTuOdX2UKGgGaAloD0MIzlDc8eYnckCUhpRSlGgVTTMBaBZHQKTEZ5gw4851fZQoaAZoCWgPQwizeofbIaBvQJSGlFKUaBVL8WgWR0CkxS8fFJg9dX2UKGgGaAloD0MII/WeyukGcUCUhpRSlGgVTSQBaBZHQKTGF3jdYXB1fZQoaAZoCWgPQwhZFkz8Uf9wQJSGlFKUaBVNMQFoFkdApMoHdVNpNHV9lChoBmgJaA9DCMgJE0bzFHJAlIaUUpRoFUv+aBZHQKTK1C7btZ51fZQoaAZoCWgPQwgM5US7SolwQJSGlFKUaBVNFQFoFkdApMug/cFhX3V9lChoBmgJaA9DCGqiz0fZX3BAlIaUUpRoFU0CAWgWR0CkzHI+wC8wdX2UKGgGaAloD0MI51YIq7EucUCUhpRSlGgVTSQBaBZHQKTNXK+SKWN1fZQoaAZoCWgPQwizBu+rsgdwQJSGlFKUaBVNDAFoFkdApM43qmj0tnV9lChoBmgJaA9DCK1OzlDc221AlIaUUpRoFU0CAWgWR0CkzwPy9VWCdX2UKGgGaAloD0MIjBGJQsuNb0CUhpRSlGgVTQ0BaBZHQKTS4DM/yG11fZQoaAZoCWgPQwg5ZAPp4h9uQJSGlFKUaBVNDgFoFkdApNOxh4MWoHV9lChoBmgJaA9DCCfBG9IoiW1AlIaUUpRoFU0iAWgWR0Ck1Ivbfxc3dX2UKGgGaAloD0MI1Ayporj+cECUhpRSlGgVTQQBaBZHQKTVW508vEl1fZQoaAZoCWgPQwjsMZHS7JVrQJSGlFKUaBVNXwFoFkdApNZ6eAd4mnV9lChoBmgJaA9DCOZZSSs+zW5AlIaUUpRoFU0LAWgWR0Ck11Huy/sWdX2UKGgGaAloD0MIrhBWYwlxSECUhpRSlGgVS9loFkdApNf0BXCCSXV9lChoBmgJaA9DCM/XLJeNoEtAlIaUUpRoFUvKaBZHQKTYj7/GVA11fZQoaAZoCWgPQwg02xX64O1tQJSGlFKUaBVL9GgWR0Ck3Fbx3FDOdX2UKGgGaAloD0MIAOSECWPLcUCUhpRSlGgVTQkBaBZHQKTdMdDIBBB1fZQoaAZoCWgPQwjy7shYrQdwQJSGlFKUaBVNGwFoFkdApN4UsYl6aHV9lChoBmgJaA9DCDzB/uvcpEZAlIaUUpRoFUvsaBZHQKTezBKtga51fZQoaAZoCWgPQwhJopdRrCFvQJSGlFKUaBVNFwFoFkdApN+nSro4dnV9lChoBmgJaA9DCDPiAtCoPW9AlIaUUpRoFU0FAWgWR0Ck4Hv3i704dX2UKGgGaAloD0MIfO4E+6/abkCUhpRSlGgVTREBaBZHQKThYf8uSOl1fZQoaAZoCWgPQwgDtK1mnZVMQJSGlFKUaBVNFQFoFkdApOJAvYe1bHV9lChoBmgJaA9DCENTdvrBpGtAlIaUUpRoFU3UAWgWR0Ck5vi9AX2vdX2UKGgGaAloD0MIp1g1CPNlbkCUhpRSlGgVTRsBaBZHQKTn3wqAjIJ1fZQoaAZoCWgPQwgLDFndKtpwQJSGlFKUaBVNLAFoFkdApOjP7FbV0HV9lChoBmgJaA9DCCGRtvEnxXFAlIaUUpRoFU0YAWgWR0Ck6aP8yeqadX2UKGgGaAloD0MITRQhdbt/cUCUhpRSlGgVTRQBaBZHQKTqeGhVU+91fZQoaAZoCWgPQwjajqm78jdwQJSGlFKUaBVNDQFoFkdApOtFRWLgoHV9lChoBmgJaA9DCLe1hecltnJAlIaUUpRoFU0KAWgWR0Ck7ydY4hlldX2UKGgGaAloD0MIKsb5mxB1cUCUhpRSlGgVTSEBaBZHQKTwBlHz6Jt1fZQoaAZoCWgPQwhh4o+iziZBQJSGlFKUaBVL0WgWR0Ck8KkP1+RYdX2UKGgGaAloD0MI3e9QFOhrbkCUhpRSlGgVS/toFkdApPFyOvMbFXV9lChoBmgJaA9DCP+z5sffjHBAlIaUUpRoFU0jAWgWR0Ck8lmr0aqCdX2UKGgGaAloD0MIvmw7bc0mckCUhpRSlGgVTQIBaBZHQKTzHNRm9QJ1fZQoaAZoCWgPQwiRnbexWa1mQJSGlFKUaBVN5wFoFkdApPTTO3UhFHV9lChoBmgJaA9DCEhQ/Bgz1nBAlIaUUpRoFU0ZAWgWR0Ck+MQoTfzjdX2UKGgGaAloD0MIhUGZRtOfcECUhpRSlGgVS/doFkdApPmIRywOfHV9lChoBmgJaA9DCMtL/if/em1AlIaUUpRoFU0QAWgWR0Ck+mAKOT7mdX2UKGgGaAloD0MIQX+hR4wQUUCUhpRSlGgVTegDaBZHQKT+Fbfxc3V1fZQoaAZoCWgPQwj6DRMNEn9xQJSGlFKUaBVNDAFoFkdApP7bOC5Et3V9lChoBmgJaA9DCNf34SBhknBAlIaUUpRoFUv2aBZHQKUCmL7XQMR1fZQoaAZoCWgPQwgLJZNTO4dLQJSGlFKUaBVL02gWR0ClAzXBguyvdX2UKGgGaAloD0MId2SsNv/bbUCUhpRSlGgVS/9oFkdApQQFMZgogHV9lChoBmgJaA9DCBK9jGK5NG1AlIaUUpRoFUv4aBZHQKUEyoOQQtl1fZQoaAZoCWgPQwh01NFxtcZwQJSGlFKUaBVNMgFoFkdApQXC+ajN6nV9lChoBmgJaA9DCPXVVYGa/nBAlIaUUpRoFU0VAWgWR0ClBpT544ZNdX2UKGgGaAloD0MIuXAgJItKcECUhpRSlGgVTQkBaBZHQKUHYeS0Sh91fZQoaAZoCWgPQwjXo3A9ip9sQJSGlFKUaBVNDAFoFkdApQg4aWHDaXVlLg==" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 4900, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }