migueladarlo commited on
Commit
a231aee
1 Parent(s): fbcdb1c

Update README.md

Browse files

Added to the description the purpose of this model.

Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -17,7 +17,7 @@ model-index:
17
 
18
  # distilbert-depression-base
19
 
20
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) trained on CLPsych 2015 and evaluated on a scraped dataset from Twitter.
21
  It achieves the following results on the evaluation set:
22
  - Evaluation Loss: 0.64
23
  - Accuracy: 0.65
@@ -29,7 +29,7 @@ It achieves the following results on the evaluation set:
29
 
30
  ## Intended uses & limitations
31
 
32
- Feed a corpus of tweets to the model to generate label if input is indicative of depression or not. Label 1 is depression, Label 0 is not.
33
 
34
  Limitation: All token sequences longer than 512 are automatically truncated. Also, training and test data may be contaminated with mislabeled users.
35
 
@@ -45,8 +45,8 @@ You can use this model directly with a pipeline for sentiment analysis:
45
  >>> from transformers import pipeline
46
  >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
47
  >>> tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}
48
- >>> result=classifier('pain peko',**tokenizer_kwargs) #For truncation to apply in the pipeline
49
-
50
 
51
  [{'label': 'LABEL_1', 'score': 0.5048992037773132}]
52
  ```
 
17
 
18
  # distilbert-depression-base
19
 
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) trained on CLPsych 2015 and evaluated on a scraped dataset from Twitter to detect potential users in Twitter for depression.
21
  It achieves the following results on the evaluation set:
22
  - Evaluation Loss: 0.64
23
  - Accuracy: 0.65
 
29
 
30
  ## Intended uses & limitations
31
 
32
+ Feed a corpus of tweets to the model to generate label if input is indicative of a depressed user or not. Label 1 is depressed, Label 0 is not depressed.
33
 
34
  Limitation: All token sequences longer than 512 are automatically truncated. Also, training and test data may be contaminated with mislabeled users.
35
 
 
45
  >>> from transformers import pipeline
46
  >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
47
  >>> tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}
48
+ >>> result=classifier('pain peko',**tokenizer_kwargs) #For truncation to apply in the pipeline.
49
+ >>> #Should note that the string passed as the input can be a corpus of tweets concatenated together into one document.
50
 
51
  [{'label': 'LABEL_1', 'score': 0.5048992037773132}]
52
  ```