--- tags: - text-to-image - stable-diffusion - lora - diffusers widget: - text: Chinese Ink, The girl with a pearl earring, 8k output: url: images/Chinese Ink, The girl with a pearl earring, 8k.png - text: Chinese Ink,a cute fox output: url: images/Chinese Ink,a cute fox.png - text: Chinese Ink, Mona Lisa, 8k output: url: images/Chinese Ink, Mona Lisa, 8k.png - text: Chinese Ink,lotus pond in summer rain output: url: images/Chinese Ink,lotus pond in summer rain.png - text: Chinese Ink, Wild Geese Descending on a Sandbank, 8k output: url: images/Chinese Ink, Wild Geese Descending on a Sandbank, 8k.png - text: Chinese Ink, the Paris skyline and the Eiffel Tower output: url: images/Chinese Ink, the Paris skyline and the Eiffel Tower.png - text: Chinese Ink, a lovely rabbit parameters: negative prompt: blurry, extra limb, bad anatomy output: url: images/Chinese Ink, a lovely rabbit.png - text: Chinese Ink, a tree with colorful leaves in autumn, 8k parameters: negative prompt: blurry, extra limb, bad anatomy output: url: images/a tree with colorful leaves in autumn.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Chinese Ink license: creativeml-openrail-m pipeline_tag: text-to-image library_name: diffusers --- # Chinese Ink Painting ## Examples ## Introduction The [**Stable Diffusion XL**](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model is finetuned on comtemporatory Chinese ink paintings. ## Usage Our inference process is speed up using [**LCM-LORA**](https://huggingface.co/latent-consistency/lcm-lora-sdxl), please make sure all the necessary libraries are up to date. ```Python pip install --upgrade pip pip install --upgrade diffusers transformers accelerate peft ``` ## Text to Image Here, we should load two adapters, **LCM-LORA** for sample accleration and **Chinese_Ink_LORA** for styled rendering with it's base model stabilityai/stable-diffusion-xl-base-1.0. Next, the scheduler needs to be changed to LCMScheduler and we can reduce the number of inference steps to just 2 to 8 steps(8 used in my experiment). ```Python import torch from diffusers import DiffusionPipeline, LCMScheduler pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", torch_dtype=torch.float16 ).to("cuda") # set scheduler pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) # load LoRAs pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm") pipe.load_lora_weights("ming-yang/sdxl_chinese_ink_lora", adapter_name="Chinese Ink") # Combine LoRAs pipe.set_adapters(["lcm", "Chinese Ink"], adapter_weights=[1.0, 0.8]) prompts = ["Chinese Ink, mona lisa picture, 8k", "mona lisa, 8k"] generator = torch.manual_seed(1) images = [pipe(prompt, num_inference_steps=8, guidance_scale=1, generator=generator).images[0] for prompt in prompts] fig, axs = plt.subplots(1, 2, figsize=(40, 20)) axs[0].imshow(images[0]) axs[0].axis('off') # 不显示坐标轴 axs[1].imshow(images[1]) axs[1].axis('off') plt.show() ``` ## Trigger words You should use **`Chinese Ink`** to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/ming-yang/sdxl_chinese_ink_lora/tree/main) them in the Files & versions tab.