--- base_model: meta-llama/Llama-2-13b-hf tags: - generated_from_trainer model-index: - name: ckpts/llama2-13b-viettel_v3.2_1epoch results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # ckpts/llama2-13b-viettel_v3.2_1epoch This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the our custom dataset. It achieves the following results on the evaluation set: - Loss: 0.3534 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4028 | 0.08 | 200 | 0.3990 | | 0.3973 | 0.16 | 400 | 0.3866 | | 0.3832 | 0.24 | 600 | 0.3790 | | 0.3844 | 0.33 | 800 | 0.3728 | | 0.3703 | 0.41 | 1000 | 0.3676 | | 0.3682 | 0.49 | 1200 | 0.3640 | | 0.3669 | 0.57 | 1400 | 0.3606 | | 0.3677 | 0.65 | 1600 | 0.3580 | | 0.3545 | 0.73 | 1800 | 0.3556 | | 0.3593 | 0.82 | 2000 | 0.3543 | | 0.3442 | 0.9 | 2200 | 0.3536 | | 0.363 | 0.98 | 2400 | 0.3534 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.14.0