File size: 12,495 Bytes
9710fb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 벤시몽 RAIN BOOTS MID - 7color DOLPHIN GREY_40 260 오리상점
- text: 플레이볼 오리진 뮬 (PLAYBALL ORIGIN MULE) NY (Off White) 화이트_230 주식회사 에프앤에프
- text: XDMNBTX0037 빅 사이즈 봄여름 블로퍼 고양이 액체설 블랙_265 푸른바다
- text: 다이어트 슬리퍼 다리 부종 스트레칭 균형 실내화 핑크 33-37_33 글로벌다이렉트
- text: 케즈 챔피온 스트랩 캔버스5 M01778F001 Black/Black/Black_230 블루빌리
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.6511206701381028
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 10 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.0 | <ul><li>'로저비비에 로저 비비어 i 러브 비비어 슬링백 펌프스 RVW53834670PE5 여성 37 주식회사 페칭'</li><li>'크롬베즈 스티치 장식 통굽펌프스 KP55797MA 카멜/245 sellerhub'</li><li>'HOBOKEN PS1511 PH2208 (3컬러) 브라운 230 NC_백화점'</li></ul> |
| 2.0 | <ul><li>'어그클래식울트라미니 ugg 어그부츠 여성 방한화 여자 발편한 겨울 신발 1116109 Sage Blossom_US 6(230) 울바이울'</li><li>'해외문스타 810s ET027 마르케 모디 운동화 장화 레인부츠 일본 직구 300_코요테_모디ET027 뉴저지홀세일'</li><li>'무릎 위에 앉다 장화 롱부츠 굽이 거칠다 평평한 바닥 고통 라이더 부츠 블랙_225 ZHANG YOUHUA'</li></ul> |
| 0.0 | <ul><li>'단화 한복신발 여성 새 혼례 소프트 한복구두 전통 꽃신 자수 39_빅화이트백봉이는한사이즈크게찍으셨으면좋겠습 대복컴퍼니'</li><li>'한복구두 꽃신 양단 생활한복 키높이 단화 굽 빅사이즈 담그어 여름 터지는 구슬 화이트-3.5cm_41 대한민국 일등 상점'</li><li>'여자 키높이 신발 여성 꽃신 한복 구두 전통 계량한복 37_화이트12(지연) 유럽걸스'</li></ul> |
| 4.0 | <ul><li>'남여공용 청키 클로그 바운서 샌들 (3ASDCBC33) 블랙(50BKS)_240 '</li><li>'[포멜카멜레]쥬얼장식트위드샌들 3cm FJS1F1SS024 아이보리/255 에이케이에스앤디(주) AK플라자 평택점'</li><li>'[하프클럽/] 에끌라 투웨이 주얼 샌들 33.카멜/245mm 롯데아이몰'</li></ul> |
| 8.0 | <ul><li>'에스콰이아 여성 발편한 경량 세미 캐주얼 앵클 워커 부츠 3cm J278C 브라운_230 (주) 패션플러스'</li><li>'[제옥스](신세계강남점) 스페리카 EC7 여성 워커부츠-블랙 W1B6VDJ3W11 블랙_245(38) 주식회사 에스에스지닷컴'</li><li>'(신세계강남점)금강 랜드로바 경량 컴포트 여성 워커 부츠 LANBOC4107WK1 240 신세계백화점'</li></ul> |
| 6.0 | <ul><li>'10mm 2중바닥 실내 슬리퍼 병원 거실 호텔 실내화 슬리퍼-타올천_고급-C_검정 주식회사 하루이'</li><li>'소프달링 남녀공용 뽀글이 스마일 털슬리퍼 여성 겨울 털실내화 VJ/왕스마일/옐로우_255 소프달링'</li><li>'소프달링 남녀공용 뽀글이 스마일 털슬리퍼 여성 겨울 털실내화 VJ/왕스마일/옐로우_245 소프달링'</li></ul> |
| 3.0 | <ul><li>'지안비토로씨 여성 마고 미드 부티 GIA36T75BLU18A1A00 EU 38.5 봉쥬르유럽'</li><li>'모다아울렛 121507 여성 7cm 깔끔 스틸레토 부티 구두 블랙k040_250 ◈217326053◈ MODA아울렛'</li><li>'미들부츠 미들힐 봄신상 워커 롱부츠 봄 가을신상 힐 블랙 245 바이포비'</li></ul> |
| 5.0 | <ul><li>'[공식판매] 버켄스탁 지제 에바 EVA 블랙 화이트 07 비트루트퍼플 키즈_220 (34) 좁은발볼 (Narrow) '</li><li>'eva 털슬리퍼 방한 방수 따듯한 털신 통굽 실내 화 기모 크로스오버 블랙M 소보로샵'</li><li>'크록스호환내피 털 탈부착 퍼 겨울 슬리퍼 안감 크림화이트(주니어)_C10-165(155~165) 인터코리아'</li></ul> |
| 7.0 | <ul><li>'[밸롭] 구름 브리즈 베이지 구름 브리즈 베이지245 (주)지티에스글로벌'</li><li>'[스텝100] 무지외반증 허리디스크 평발 신발 무릎 관절 중년 여성 운동화 화이트핑크플라워_235 스텝100'</li><li>'물컹슈즈 2.0 기능성 운동화 발편한 쿠션 운동화 무지외반증신발 족저근막염 물컹 업그레이드2.0_네이비_46(280mm) 주식회사 나인투식스'</li></ul> |
| 1.0 | <ul><li>'베라왕 스타일온에어 23SS 청 플랫폼 로퍼 80111682 G 667381 틸블루_230 DM ENG'</li><li>'[MUJI] 발수 발이 편한 스니커 머스터드 235mm 4550182676303 무인양품(주)'</li><li>'[반스(슈즈)]반스 어센틱 체커보드 스니커즈 (VN000W4NDI0) 4.240 롯데아이몰'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.6511 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac10")
# Run inference
preds = model("XDMNBTX0037 빅 사이즈 봄여름 블로퍼 고양이 액체설 블랙_265 푸른바다")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 10.504 | 21 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 50 |
| 6.0 | 50 |
| 7.0 | 50 |
| 8.0 | 50 |
| 9.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0127 | 1 | 0.4172 | - |
| 0.6329 | 50 | 0.3266 | - |
| 1.2658 | 100 | 0.1718 | - |
| 1.8987 | 150 | 0.095 | - |
| 2.5316 | 200 | 0.0257 | - |
| 3.1646 | 250 | 0.0142 | - |
| 3.7975 | 300 | 0.0026 | - |
| 4.4304 | 350 | 0.0164 | - |
| 5.0633 | 400 | 0.01 | - |
| 5.6962 | 450 | 0.0004 | - |
| 6.3291 | 500 | 0.0003 | - |
| 6.9620 | 550 | 0.0002 | - |
| 7.5949 | 600 | 0.0002 | - |
| 8.2278 | 650 | 0.0001 | - |
| 8.8608 | 700 | 0.0001 | - |
| 9.4937 | 750 | 0.0001 | - |
| 10.1266 | 800 | 0.0001 | - |
| 10.7595 | 850 | 0.0001 | - |
| 11.3924 | 900 | 0.0001 | - |
| 12.0253 | 950 | 0.0001 | - |
| 12.6582 | 1000 | 0.0001 | - |
| 13.2911 | 1050 | 0.0001 | - |
| 13.9241 | 1100 | 0.0001 | - |
| 14.5570 | 1150 | 0.0001 | - |
| 15.1899 | 1200 | 0.0001 | - |
| 15.8228 | 1250 | 0.0001 | - |
| 16.4557 | 1300 | 0.0001 | - |
| 17.0886 | 1350 | 0.0001 | - |
| 17.7215 | 1400 | 0.0001 | - |
| 18.3544 | 1450 | 0.0001 | - |
| 18.9873 | 1500 | 0.0001 | - |
| 19.6203 | 1550 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |