master_cate_ac8 / README.md
mini1013's picture
Push model using huggingface_hub.
13d148f verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: >-
      [10%+복수620]국내생산 남자여자 최대15켤레 페이크삭스 실리콘 덧신 양말 학생 무지 25_챠밍레이스실리콘_여성_베이지(4켤레)
      발장난양말
  - text: >-
      W616 따뜻한 두꺼운 순면 통파일 무지 긴 양말 여자 남자 빅사이즈 수면 겨울 덧신 니삭스 W432 골지 통파일
      덧신_S(225-245mm)_블랙 삭스에이
  - text: >-
      [2차 11/14 예약배송][23FW] HEMISH LEG WARMER - MELANGE GREY MELANGE GREY_FREE
      주식회사 타입스(Types Co.,Ltd)
  - text: 도톰한 면두올 양말 국내생산/중목/장목/스니커즈/패션/학생 25~26_26.남녀 기모덧신_여)2켤레 / 블랙 투투삭스
  - text: 도톰 엄지 양말 발가락  타비 삭스 기모 보온 컬러 여자 두꺼운 무지 연브라운 김민주
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.7735123253257968
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '자전거 등산 골프 겨울 발 다리토시 레그워머 브라운 디플코리아 (Digital Plus Korea)'
  • '국산 면 탁텔 겨울 방한 팔 다리 수면 토시 발 임산부 산후용품 수족냉증 겨울 방한 보온 기본 수면토시 그레이 세자매 양말'
  • '세븐다스 여자 레그워머 수면 여성 발토시 겨울 보온 SD001 그레이_FREE 아이보리'
0.0
  • '[매장발송] 마리떼 11/6 배송 3PACK EMBROIDERY SOCKS multi OS 와이에스마켓'
  • '에브리데이 플러스 쿠션 트레이닝 크루 삭스(3켤레) SX6888-100 024 '
  • '[롯데백화점]언더아머(백) 유니섹스 UA 코어 쿼터 양말 - 3켤레 1358344-100 1.LG 롯데백화점_'

Evaluation

Metrics

Label Metric
all 0.7735

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac8")
# Run inference
preds = model("도톰 엄지 양말 발가락 여 타비 삭스 기모 보온 컬러 여자 두꺼운 무지 연브라운 김민주")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 10.82 24
Label Training Sample Count
0.0 50
1.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0625 1 0.4226 -
3.125 50 0.0022 -
6.25 100 0.0001 -
9.375 150 0.0001 -
12.5 200 0.0001 -
15.625 250 0.0001 -
18.75 300 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}