--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 여성 가방 숄더백 미니 크로스백 퀼팅백 체인백 토트백 미니백 여자 핸드백 구름백 클러치백 직장인 백팩 프리아_카멜 더블유팝 - text: 국내 잔스포츠 백팩 슈퍼브레이크 4QUT 블랙 학생 여성 가벼운 가방 캠핑 여행 당일 가원 - text: 국내생산 코튼 양줄면주머니 미니&에코 주머니 7종 학원 학교 만들기수업 양줄주머니_14cmX28cm(J14) 명성패키지 - text: 웨빙 플라워 스트랩 레디백 길이조절 가방끈 어깨끈 리폼 3-플라워가방끈-흰색 이백프로 - text: 엔비조네/가방끈/가방끈리폼/가죽끈/크로스끈/숄더끈/스트랩 AOR오링25mm_블랙오플_폭11mm *35cm 니켈 엔비조네 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.7867699642431466 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 10 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 3.0 | | | 7.0 | | | 1.0 | | | 9.0 | | | 0.0 | | | 5.0 | | | 2.0 | | | 4.0 | | | 8.0 | | | 6.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.7868 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac9") # Run inference preds = model("웨빙 플라워 스트랩 레디백 길이조절 가방끈 어깨끈 리폼 3-플라워가방끈-흰색 이백프로") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.6146 | 30 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 17 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0137 | 1 | 0.4278 | - | | 0.6849 | 50 | 0.3052 | - | | 1.3699 | 100 | 0.1524 | - | | 2.0548 | 150 | 0.0583 | - | | 2.7397 | 200 | 0.0292 | - | | 3.4247 | 250 | 0.0197 | - | | 4.1096 | 300 | 0.0061 | - | | 4.7945 | 350 | 0.0022 | - | | 5.4795 | 400 | 0.0033 | - | | 6.1644 | 450 | 0.0003 | - | | 6.8493 | 500 | 0.0002 | - | | 7.5342 | 550 | 0.0001 | - | | 8.2192 | 600 | 0.0001 | - | | 8.9041 | 650 | 0.0001 | - | | 9.5890 | 700 | 0.0001 | - | | 10.2740 | 750 | 0.0001 | - | | 10.9589 | 800 | 0.0001 | - | | 11.6438 | 850 | 0.0001 | - | | 12.3288 | 900 | 0.0001 | - | | 13.0137 | 950 | 0.0001 | - | | 13.6986 | 1000 | 0.0001 | - | | 14.3836 | 1050 | 0.0001 | - | | 15.0685 | 1100 | 0.0001 | - | | 15.7534 | 1150 | 0.0001 | - | | 16.4384 | 1200 | 0.0001 | - | | 17.1233 | 1250 | 0.0 | - | | 17.8082 | 1300 | 0.0001 | - | | 18.4932 | 1350 | 0.0001 | - | | 19.1781 | 1400 | 0.0001 | - | | 19.8630 | 1450 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```