Edit model card

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2.0
  • '훈제연어(통) 약1.1kg 냉동연어 필렛 슬라이스 칠레산 HACCP 국내가공 화이트베어 화이트베어 훈제연어슬라이스 ±1.3kg 주식회사 셀피'
  • '안동간고등어 80g 10팩(5마리) 동의합니다_80g 10팩(5마리) 델리아마켓'
  • '제주 국내산 손질 고등어 2KG 한팩150g이상 11-12팩 3KG(16-19팩) 효명가'
1.0
  • '동원F&B 양반 김치맛 김부각 50g 1개 동원F&B 양반 김치맛 김부각 50g 1개 다팔아스토어'
  • '오뚜기 옛날 자른미역 50G 대성상사'
  • '환길산업 섬마을 해초샐러드 냉동 해초무침 2kg 제루통상'
0.0
  • 'Fish Tree 국물용멸치 1.3kg 케이원'
  • 'Fish Tree 국물용 볶음용 멸치 1.3kg 1kg 뼈건강 깊은맛 육수 대멸치 좋은식감 국물용 멸치 1.3kg 유라너스'
  • 'Fish Tree 국물용 멸치 1.3kg 이숍'
3.0
  • '랭킹수산 장어구이 혼합 140gx20팩(데리야끼10매콤10) -인증 제이원무역'
  • '올반 대왕 오징어튀김 400g 나라유통'
  • '바다愛한끼 이원일 연평도 꽃게 해물탕 760g 소스포함 2팩 (주)티알엔'
5.0
  • '날치알 동림 담홍 레드 800G [800G][동림]날치알(골드)(팩) 주식회사 명품씨푸드'
  • '날치알 동림 담홍 레드 800G [800G][동림]날치알(레드)(팩) 주식회사 명품씨푸드'
  • '날치알 동림 담홍 레드 800G [800gG[코아]날치알[골드] 주식회사 명품씨푸드'
4.0
  • '명인오가네 연어장 250g 명인오가네몰'
  • '[나브연] 수제 간장 연어장 750g 덜짜게 주희종'
  • '[나브연] 수제 간장 연어장 500g 보통 주희종'

Evaluation

Metrics

Label Metric
all 0.8689

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd11")
# Run inference
preds = model("CJ 명가김 파래김 4g 16입  트릴리어네어스")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.1164 23
Label Training Sample Count
0.0 50
1.0 50
2.0 50
3.0 50
4.0 50
5.0 25

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0233 1 0.4609 -
1.1628 50 0.2116 -
2.3256 100 0.0876 -
3.4884 150 0.0442 -
4.6512 200 0.0254 -
5.8140 250 0.0133 -
6.9767 300 0.0252 -
8.1395 350 0.0176 -
9.3023 400 0.0116 -
10.4651 450 0.004 -
11.6279 500 0.0231 -
12.7907 550 0.0023 -
13.9535 600 0.0017 -
15.1163 650 0.0002 -
16.2791 700 0.0001 -
17.4419 750 0.0001 -
18.6047 800 0.0001 -
19.7674 850 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1,033
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_fd11

Base model

klue/roberta-base
Finetuned
(92)
this model

Evaluation results