---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[바다원] 깨끗한 돌김자반볶음 오리지널 40g x 5봉 (주)씨제이이엔엠'
- text: 쭈꾸미사령부 매운맛 300g 3개 불타는 매운맛 원츄쟈챠
- text: 냉동 새우 튀김 300g 6미 10미 대용량 업소용 빵가루 왕새우튀김 코코넛쉬림프 360g (30미) 주식회사 더꽃게
- text: 잇투헤븐 팔당 불 오징어 매운 오징어 볶음 400g 쭈꾸미도사 쭈꾸미볶음 01.팔당불오징어400g 1팩 (주)잇투헤븐
- text: CJ 명가김 파래김 4g 16입 트릴리어네어스
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8689361702127659
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 |
- '훈제연어(통) 약1.1kg 냉동연어 필렛 슬라이스 칠레산 HACCP 국내가공 화이트베어 화이트베어 훈제연어슬라이스 ±1.3kg 주식회사 셀피'
- '안동간고등어 80g 10팩(5마리) 동의합니다_80g 10팩(5마리) 델리아마켓'
- '제주 국내산 손질 고등어 2KG 한팩150g이상 11-12팩 3KG(16-19팩) 효명가'
|
| 1.0 | - '동원F&B 양반 김치맛 김부각 50g 1개 동원F&B 양반 김치맛 김부각 50g 1개 다팔아스토어'
- '오뚜기 옛날 자른미역 50G 대성상사'
- '환길산업 섬마을 해초샐러드 냉동 해초무침 2kg 제루통상'
|
| 0.0 | - 'Fish Tree 국물용멸치 1.3kg 케이원'
- 'Fish Tree 국물용 볶음용 멸치 1.3kg 1kg 뼈건강 깊은맛 육수 대멸치 좋은식감 국물용 멸치 1.3kg 유라너스'
- 'Fish Tree 국물용 멸치 1.3kg 이숍'
|
| 3.0 | - '랭킹수산 장어구이 혼합 140gx20팩(데리야끼10매콤10) -인증 제이원무역'
- '올반 대왕 오징어튀김 400g 나라유통'
- '바다愛한끼 이원일 연평도 꽃게 해물탕 760g 소스포함 2팩 (주)티알엔'
|
| 5.0 | - '날치알 동림 담홍 레드 800G [800G][동림]날치알(골드)(팩) 주식회사 명품씨푸드'
- '날치알 동림 담홍 레드 800G [800G][동림]날치알(레드)(팩) 주식회사 명품씨푸드'
- '날치알 동림 담홍 레드 800G [800gG[코아]날치알[골드] 주식회사 명품씨푸드'
|
| 4.0 | - '명인오가네 연어장 250g 명인오가네몰'
- '[나브연] 수제 간장 연어장 750g 덜짜게 주희종'
- '[나브연] 수제 간장 연어장 500g 보통 주희종'
|
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.8689 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd11")
# Run inference
preds = model("CJ 명가김 파래김 4g 16입 트릴리어네어스")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.1164 | 23 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 25 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0233 | 1 | 0.4609 | - |
| 1.1628 | 50 | 0.2116 | - |
| 2.3256 | 100 | 0.0876 | - |
| 3.4884 | 150 | 0.0442 | - |
| 4.6512 | 200 | 0.0254 | - |
| 5.8140 | 250 | 0.0133 | - |
| 6.9767 | 300 | 0.0252 | - |
| 8.1395 | 350 | 0.0176 | - |
| 9.3023 | 400 | 0.0116 | - |
| 10.4651 | 450 | 0.004 | - |
| 11.6279 | 500 | 0.0231 | - |
| 12.7907 | 550 | 0.0023 | - |
| 13.9535 | 600 | 0.0017 | - |
| 15.1163 | 650 | 0.0002 | - |
| 16.2791 | 700 | 0.0001 | - |
| 17.4419 | 750 | 0.0001 | - |
| 18.6047 | 800 | 0.0001 | - |
| 19.7674 | 850 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```