--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 지푸드박스 제이엔제이트레이드 코코엘 유기농 엑스트라버진 코코넛오일 필리핀산 415ml 헬시푸드몰 - text: CJ 백설 2통 이상 구매시 할인 쿠폰 콩기름 식용유 대두유 18L 이츠웰 해표 오뚜기 롯데 식용유 말통 전국 최저가판매 식용유_오뚜기식용유 주식회사 황금알에프앤오 - text: 올리타리아 엑스트라버진 올리브오일 1L 카비스 - text: 커클랜드 시그니춰 카놀라유 오일 2.83L 커클랜드 카놀라유2.83L 베이비파크 - text: 해표)고추맛기름 1.8L 에스엠(SM)식자재도매센터 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9926900584795322 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 9 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | | | 3.0 | | | 4.0 | | | 7.0 | | | 2.0 | | | 1.0 | | | 0.0 | | | 5.0 | | | 8.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9927 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fd12") # Run inference preds = model("올리타리아 엑스트라버진 올리브오일 1L 카비스") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 8.5356 | 22 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0141 | 1 | 0.4844 | - | | 0.7042 | 50 | 0.3408 | - | | 1.4085 | 100 | 0.0769 | - | | 2.1127 | 150 | 0.0298 | - | | 2.8169 | 200 | 0.023 | - | | 3.5211 | 250 | 0.0251 | - | | 4.2254 | 300 | 0.0291 | - | | 4.9296 | 350 | 0.0156 | - | | 5.6338 | 400 | 0.0137 | - | | 6.3380 | 450 | 0.0029 | - | | 7.0423 | 500 | 0.0001 | - | | 7.7465 | 550 | 0.0001 | - | | 8.4507 | 600 | 0.0001 | - | | 9.1549 | 650 | 0.0 | - | | 9.8592 | 700 | 0.0 | - | | 10.5634 | 750 | 0.0 | - | | 11.2676 | 800 | 0.0 | - | | 11.9718 | 850 | 0.0 | - | | 12.6761 | 900 | 0.0 | - | | 13.3803 | 950 | 0.0 | - | | 14.0845 | 1000 | 0.0 | - | | 14.7887 | 1050 | 0.0 | - | | 15.4930 | 1100 | 0.0 | - | | 16.1972 | 1150 | 0.0 | - | | 16.9014 | 1200 | 0.0 | - | | 17.6056 | 1250 | 0.0 | - | | 18.3099 | 1300 | 0.0 | - | | 19.0141 | 1350 | 0.0 | - | | 19.7183 | 1400 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```