File size: 9,572 Bytes
482cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 동원 덴마크 구워먹는 치즈 후라이드 갈릭 125g x 3  007스테이지스
- text: 앵커크림치즈 1박스 (1kg x 12개) 앵커크림치즈 1박스 (1kg x 12개) (주)비오비
- text: 홉라 무가당 휘핑크림 1L 2개세트  마켓이
- text: 매일 상하치즈 리코타치즈 200g 2 냉장배송  대명유통
- text: 홉라 생크림 무가당 1L 휘핑크림 베이킹 쿠킹크림 1000ml 홉라 생크림 무가당 1L + 아이스박스 (주)비오비
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.9220726783310902
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                  |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.0   | <ul><li>'[아이스박스무료] 선인 DB 휘핑크림 1L 무가당 혼합 생크림  재이F&B'</li><li>'이탈리아 홉라 식물성 생크림 500ml 6개 무가당 홉라 홈라 크림  알이즈웰'</li><li>'카파 포모나 휘핑 스프레이 500g 와플 크림 딸기향/휘핑 스프레이 500g 디씨즈(This is)'</li></ul>                                     |
| 1.0   | <ul><li>'오뚜기 버터후레시 48개(아이스박스)/일회용버터 오뚜기 딸기잼 디스펜팩 40개+메이플시럽 40 박길용'</li><li>'버터린 롯데 450g 마늘향오일 갈릭버터오일  (주)인벨'</li><li>'[본사직송] 라꽁비에뜨 가염 무염 꽃소금 버터 450g (15g x 30개) 11/15(수)배송예정_라꽁비에뜨-가염 450g (30개입) 인에이블 코리아(주)'</li></ul> |
| 3.0   | <ul><li>'인도네시아 인도 밀크 스위트드컨덴센 팩 545g 연유  동원무역(이마트24 감천네거리점)'</li><li>'매일연유 5kg 대용량 x 2개 연유  카페스토리(CAFE STORY)'</li><li>'누티 크리머 스위텐드 연유 시럽 385g x 8개  클루'</li></ul>                                                         |
| 0.0   | <ul><li>'오뚜기 파운드 마아가린(벌크) 9kg  피치피치몰'</li><li>'오뚜기 쿠키 옥수수마가린 200Gx2 1세트 제과 제빵 토스트  방글방글마켓'</li><li>'Whirl Admiration Pro Fry 액체 쇼트닝 튀김용 3.6kg 8파운드  포커스라이프'</li></ul>                                                     |
| 2.0   | <ul><li>'밀락골드 1L 제품수량선택 에스제이푸드(SJ FOOD)'</li><li>'[구매전 긴급공지 필독]1217. 뉴골드라벨 - 한박스(1030g x 12개)  베이킹도전'</li><li>'밀락골드 1L 아이스박스필수구매 에스제이푸드(SJ FOOD)'</li></ul>                                                               |
| 4.0   | <ul><li>'상하 샐러드용 슈레드치즈 210g X 1개 종이박스포장 오하'</li><li>'끼리 크림치즈 스프레드 플레인 x 4개 베이글 발라 먹는 치즈 토스트 끼리 크림치즈 스프레드 플레인 4개 더팜'</li><li>'데르뜨 롤케이크 선물세트 소잘우유 초코크림 380g 1개 우유크림 360g 냉동  오씨홀딩스'</li></ul>                               |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.9221 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd13")
# Run inference
preds = model("홉라 무가당 휘핑크림 1L 2개세트  마켓이")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.5067 | 18  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0213  | 1    | 0.4249        | -               |
| 1.0638  | 50   | 0.2783        | -               |
| 2.1277  | 100  | 0.0747        | -               |
| 3.1915  | 150  | 0.0734        | -               |
| 4.2553  | 200  | 0.0368        | -               |
| 5.3191  | 250  | 0.0373        | -               |
| 6.3830  | 300  | 0.0003        | -               |
| 7.4468  | 350  | 0.0001        | -               |
| 8.5106  | 400  | 0.0001        | -               |
| 9.5745  | 450  | 0.0001        | -               |
| 10.6383 | 500  | 0.0           | -               |
| 11.7021 | 550  | 0.0           | -               |
| 12.7660 | 600  | 0.0           | -               |
| 13.8298 | 650  | 0.0           | -               |
| 14.8936 | 700  | 0.0           | -               |
| 15.9574 | 750  | 0.0           | -               |
| 17.0213 | 800  | 0.0           | -               |
| 18.0851 | 850  | 0.0           | -               |
| 19.1489 | 900  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->