--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 코스트코 수지스 그릴드 닭가슴살 1.8kg 수비드 페퍼콘 허브 그릴드 닭가슴살 1.8kg (스테디) 리반태닝 - text: 에쓰푸드 전지베이컨(1.9mm 슬라이스) 500g(기름기가 적고 담백한 베이컨) 금정푸드 - text: 849967 동원 퀴진 통등심 돈까스 480g 3봉 외 4종 1)돈까스(통등심) 480g 1)돈까스(통등심) 480g_4)생선커틀렛 400g_4)생선커틀렛 400g 시드웰쓰파트너스 - text: 돼지 뒷다리살 수육용 제육볶음고기 찌개용 ★핫딜대전★ 한돈 뒷다리살 1kg_보쌈용덩어리 주식회사 삼형제월드 - text: 송이 불닭발 280gX10팩/국내산, 원앙, 닭발, 매운 (주)천지농산 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.6435236614085759 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 8 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7.0 | | | 2.0 | | | 6.0 | | | 0.0 | | | 5.0 | | | 1.0 | | | 3.0 | | | 4.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.6435 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fd20") # Run inference preds = model("송이 불닭발 280gX10팩/국내산, 원앙, 닭발, 매운 (주)천지농산") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.0318 | 24 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 19 | | 5.0 | 27 | | 6.0 | 50 | | 7.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0182 | 1 | 0.4004 | - | | 0.9091 | 50 | 0.238 | - | | 1.8182 | 100 | 0.1002 | - | | 2.7273 | 150 | 0.0799 | - | | 3.6364 | 200 | 0.063 | - | | 4.5455 | 250 | 0.0301 | - | | 5.4545 | 300 | 0.0261 | - | | 6.3636 | 350 | 0.0128 | - | | 7.2727 | 400 | 0.0054 | - | | 8.1818 | 450 | 0.008 | - | | 9.0909 | 500 | 0.004 | - | | 10.0 | 550 | 0.0001 | - | | 10.9091 | 600 | 0.002 | - | | 11.8182 | 650 | 0.002 | - | | 12.7273 | 700 | 0.0058 | - | | 13.6364 | 750 | 0.0039 | - | | 14.5455 | 800 | 0.0016 | - | | 15.4545 | 850 | 0.0001 | - | | 16.3636 | 900 | 0.0001 | - | | 17.2727 | 950 | 0.0001 | - | | 18.1818 | 1000 | 0.0001 | - | | 19.0909 | 1050 | 0.0 | - | | 20.0 | 1100 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```