---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 코스트코 수지스 그릴드 닭가슴살 1.8kg 수비드 페퍼콘 허브 그릴드 닭가슴살 1.8kg (스테디) 리반태닝
- text: 에쓰푸드 전지베이컨(1.9mm 슬라이스) 500g(기름기가 적고 담백한 베이컨) 금정푸드
- text: 849967 동원 퀴진 통등심 돈까스 480g 3봉 외 4종 1)돈까스(통등심) 480g 1)돈까스(통등심) 480g_4)생선커틀렛
400g_4)생선커틀렛 400g 시드웰쓰파트너스
- text: 돼지 뒷다리살 수육용 제육볶음고기 찌개용 ★핫딜대전★ 한돈 뒷다리살 1kg_보쌈용덩어리 주식회사 삼형제월드
- text: 송이 불닭발 280gX10팩/국내산, 원앙, 닭발, 매운 (주)천지농산
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.6435236614085759
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 8 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.0 |
- '남도전통 우리맛 토종순대 천연돈장 1kg 4인분 우리맛 토종순대 1kg+1kg (2개) 주식회사 금호비앤디'
- '코스트코 커클랜드 시그니춰 크럼블스 베이컨 567g 최고의수준'
- '하림 아이로운 닭가슴살 팝콘치킨500g 1봉+1봉 팔레스티'
|
| 2.0 | - '청정원 안주야 매운곱창볶음 160g 4개 (주) 이카루스'
- '삼치기 쫄여먹는 쫄갈비 300g 1-2인분 물갈비 캠핑요리 음식 밀키트 고기 양념돼지갈비 쫄여먹는 쫄갈비 300g(1~2인분) 삼치기'
- '파티큐 귀족 통돼지바베큐 (5-10인분) 만화고기 캠핑음식 집들이 출장 부천종합버스터미널_1/6상체 주식회사 파티큐'
|
| 6.0 | - '송화단(화풍60g x10) 8개 식자재 업소용 대용량 일흥상회'
- '오리로스500gx4팩 고추오리불고기500gx1팩 선물용 마이다스'
- '춘천달갈비 국내산 즉석조리식품 안동 순살 찜닭 1kg / 3-4인분 주식회사 에프앤에프커머스'
|
| 0.0 | - 'Espuna 스페인 전통 하몽 초리초슬라이스100g1개jamon 밀도상점'
- '목우촌 버터구이 치킨 봉 500gX2개 팔레스티몰'
- '우리맛 모듬국밥 머리고기+내장 2인분 (440g) 모듬국밥 4pack (800g) 주식회사 금호비앤디'
|
| 5.0 | - '[호주산] 양등뼈 1kg cj거성푸드'
- '양의나라 유기농 양고기 양갈비 양꼬치 프렌치렉 숄더랙 캠핑 냉장 냉동 양의 나라'
- '하이마블 프렌치랙 프랜치랙 양갈비 양고기 450g 램 미니 토마호크 프렌치랙 450g (냉동) 주식회사 하이마블'
|
| 1.0 | - '하림 치킨너겟(Ⅱ) 1kg 텐더스틱 1kg 주식회사 미담'
- '이종하작가 비법매실먹은 춘천닭갈비 올인원세트 3인분 (닭갈비 + 야채+떡+치즈 포함) 통다리살 간장바베큐 4개(1kg) 춘천맛식품'
- '국물닭발 700g 2팩 튤립 숯불 오돌뼈 술안주 혼술 야식 국내산 매운맛 제육볶음 오돌뼈 250g 2팩 주식회사 바르'
|
| 3.0 | - '미트홀 부채살 찹스테이크 부채 큐브 스테이크 1kg(200gX5팩) 짜파구리 미트홀'
- '[도착보장] 올반 소불고기 전골세트 (소불고기 4팩 + 전골육수 2팩) 저녁 국 탕 찌개 반찬 간편식 밀키트 소불고기 4팩+전골육수2팩 (주)신세계푸드'
- '에스푸드 바싹 불고기 1kg 주식회사 클릭몰'
|
| 4.0 | - '흥생농장 반숙란40구 촉촉한 부드러운 반숙계란 흥생농장'
- '에그트리 특란 90구 HACCP농장직송 날계란 에그트리농장'
- '중국 염장 오리알 야단 372g 유황 찐오리알 6개입 오너트리'
|
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.6435 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd20")
# Run inference
preds = model("송이 불닭발 280gX10팩/국내산, 원앙, 닭발, 매운 (주)천지농산")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 10.0318 | 24 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 19 |
| 5.0 | 27 |
| 6.0 | 50 |
| 7.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0182 | 1 | 0.4004 | - |
| 0.9091 | 50 | 0.238 | - |
| 1.8182 | 100 | 0.1002 | - |
| 2.7273 | 150 | 0.0799 | - |
| 3.6364 | 200 | 0.063 | - |
| 4.5455 | 250 | 0.0301 | - |
| 5.4545 | 300 | 0.0261 | - |
| 6.3636 | 350 | 0.0128 | - |
| 7.2727 | 400 | 0.0054 | - |
| 8.1818 | 450 | 0.008 | - |
| 9.0909 | 500 | 0.004 | - |
| 10.0 | 550 | 0.0001 | - |
| 10.9091 | 600 | 0.002 | - |
| 11.8182 | 650 | 0.002 | - |
| 12.7273 | 700 | 0.0058 | - |
| 13.6364 | 750 | 0.0039 | - |
| 14.5455 | 800 | 0.0016 | - |
| 15.4545 | 850 | 0.0001 | - |
| 16.3636 | 900 | 0.0001 | - |
| 17.2727 | 950 | 0.0001 | - |
| 18.1818 | 1000 | 0.0001 | - |
| 19.0909 | 1050 | 0.0 | - |
| 20.0 | 1100 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```