master_item_fd / README.md
mini1013's picture
Push model using huggingface_hub.
6b346d6 verified
metadata
base_model: klue/roberta-base
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: >-
      ๐Ÿฏ๊ตญ์‚ฐ์Œ€ ์กฐ์ฒญ๐Ÿฏ ์ˆ˜์ œ์˜ค๋ž€๋‹ค ์„ ๋ฌผ์„ธํŠธ ๋‹ต๋ก€ํ’ˆ 18P 9์›” 3์ผ ์ถœ๊ณ (4์ผ~5์ผ
      ๋„์ฐฉ์˜ˆ์ •)_๊ฒฌ๊ณผ์ŠคํŽ˜์…œ(์˜ค๋ฆฌ์ง€๋„8p+์ŠคํŽ˜์…œ10p)_๊ฐ์‚ฌ์˜ ๋งˆ์Œ์„ ์ „ํ•ฉ๋‹ˆ๋‹ค ์ƒํ”„๋ฃป(st.fruit)
  - text: ํฌ์นด๋ฆฌ์Šค์›จํŠธ 245ml 1๊ฐœ ์ค‘ํŒจํŠธ_๋ฝ€๋กœ๋กœ(๋ฐ€ํฌ๋ง›) 235ML X 24๋ณ‘ ์ฃผ์‹ํšŒ์‚ฌ ์†ก๋ฏผ
  - text: ํฌ์นด๋ฆฌ์Šค์›จํŠธ 245ml 1๊ฐœ ๋ฏธ๋‹ˆ์บ”_ํ‹ฐ์˜คํ”ผ ์Šค์œ„ํŠธ ์•„๋ฉ”๋ฆฌ์นด๋…ธ 200ml 30๊ฐœ ๋Œ€์˜์ƒ์‚ฌ
  - text: >-
      ์‰์ดํฌ๋ฒ ์ด๋น„ ๋‹ค์ด์–ดํŠธ ๋‹จ๋ฐฑ์งˆ ์‰์ดํฌ ๋ง›์žˆ๋Š” ์‹์‚ฌ๋Œ€์šฉ ์‹๋‹จ ์Œ์‹ ๋”ธ๊ธฐ๋ง› 750g 3+ํด๋”ฉ๋ฐ•์Šค
      ๊ตฌ์„ฑ_์ดˆ์ฝ”+์Šค์œ—์ฝ˜+๋งˆ์‹œ๋ฉœ๋กœ์ดˆ์ฝ”_ํด๋”ฉ๋ฐ•์Šค+ํ•‘ํฌ๋ณดํ‹€ 1๊ฐœ+ํ™”์ดํŠธ๋ณดํ‹€ 1๊ฐœ ์ฃผ์‹ํšŒ์‚ฌ ์Šฌ๋กœ์šฐ๋กœ์ผ“
  - text: ํฌ๋‰ด ์ดˆ์ž„๊ณ„ ์•Œํ‹ฐ์ง€ XV ์˜ค๋ฉ”๊ฐ€3 ๋ฏธ๋‹ˆ ์นด์ œ๋กœํ…œ ํฌ๋‰ด ์ดˆ์ž„๊ณ„ ์‹๋ฌผ์„ฑ ์•Œํ‹ฐ์ง€ ์˜ค๋ฉ”๊ฐ€3โ–ณ (์ฃผ)ํฌํ„ฐ๋ธ”๋‰ดํŠธ๋ฆฌ์…˜
inference: true
model-index:
  - name: SetFit with klue/roberta-base
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.9180474602529828
            name: Metric

SetFit with klue/roberta-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Sentence Transformer body: klue/roberta-base
  • Classification head: a LogisticRegression instance
  • Maximum Sequence Length: 512 tokens
  • Number of Classes: 22 classes

Model Sources

Model Labels

Label Examples
9.0
  • '๋™๋ณด์‹ํ’ˆ ๊น๋งˆ๋Š˜ 4kg ์ž˜๊ณ ๋ ค'
  • '[์‚ฐ๋“คํ•ด๋ฐ˜์ฐฌ]์ฝฉ์ž๋ฐ˜ 200g ์ฃผ์‹ํšŒ์‚ฌ ์‚ฐ๋“คํ•ด'
  • '์Œ€๊ฒŒ ๋ฌด์นจ 4kg ๋Œ€์šฉ๋Ÿ‰ ์—…์†Œ์šฉ ์‹๋‹น ๋ฐ˜์ฐฌ ๋ฐฉ๊ฒŒ ์กฐ๋ฆผ (์œ ) ํ˜‘๋™๋ง›์‚ฌ๋ž‘์‹ํ’ˆ'
0.0
  • '๋šœ๋ ˆ๋ฐ˜ ์—ฟ๊ธฐ๋ฆ„๊ฐ€๋ฃจ 1kg (๋ณตํ•ฉ) ์ฃผ์‹ํšŒ์‚ฌ ์‚ผ๋ถ€'
  • 'ํ”„๋ฆฌ๋ฏธ์—„ ์•„๋ชฌ๋“œ๊ฐ€๋ฃจ 1kg 95% ์•„๋ชฌ๋“œ๋ถ„๋ง ์•„๋ชฌ๋“œํŒŒ์šฐ๋” ํ”„๋ฆฌ๋ฏธ์—„ ์•„๋ชฌ๋“œ๋ถ„๋ง(95%) 1kg ๋น„ํƒ€๋ฏผํ”Œ๋Ÿฌ์Šค'
  • '์˜ค๋šœ๊ธฐ ํŠ€๊น€๊ฐ€๋ฃจ 2kg ๋ฆฌ์–ผ์œ ํ†ต์ปดํผ๋‹ˆ'
2.0
  • '์‹œ๋กœ์ด์ฝ”์ด๋น„ํ†  ์ด์‹œ์•ผ ์ผ๋ณธ๊ณผ์ž ์ฟ ํฌ๋‹ค์Šค ํ•˜์–€์—ฐ์ธ 9๊ฐœ์ž… ๋„ํ†ค๋ณด๋ฆฌ์˜ ์—ฐ์ธ 12๋งค์ž… INCAPE CO.,LTD'
  • '์ž์ผ๋ฆฌํ†จ ์˜ค๋ฆฌ์ง€๋‚  ๋ฆฌํ•„ 115gx3๋ด‰ ์™ธ 5์ข… 02.์ž์ผ๋ฆฌํ†จ ์•ŒํŒŒ ๋ฆฌํ•„ 102g_01.์ž์ผ๋ฆฌํ†จ ์˜ค๋ฆฌ์ง€๋‚  ๋ฆฌํ•„ 115g_06.์กธ์Œ๋ฒˆ์ฉ๊ปŒ ํ†กํ†ก!87g (์ฃผ)ํ‘ธ๋“œ์กฐ์ด'
  • '70g ์ถ”์–ต์˜ ๋„๋‚˜์Šค 1๊ฐœ ์—์Šค์ œ์ด(SJ)์กฐ์•„์‡ผํ•‘'
12.0
  • '๋ฐ”์˜ ์—‘์ŠคํŠธ๋ผ๋ฒ„์ง„ ์˜ฌ๋ฆฌ๋ธŒ์˜ค์ผ 2L ์ œ3์ž์˜ ๋ฐฐ์†ก๊ด€๋ จ ๊ฐœ์ธ์ •๋ณด ์ด์šฉ์— ๋Œ€ํ•ด ๋™์˜ํ•จ ๋ฒ„๋‹ˆ๋ฒ„์ฆˆ'
  • 'CJ์ œ์ผ์ œ๋‹น ๋ฐฑ์„ค ์ฝฉ๊ธฐ๋ฆ„ 1.5L ์‚ฌ์กฐ ํ•ดํ‘œ ์‹์šฉ์œ  1.8L ์‚ผ์˜์œ ํ†ต'
  • 'CJ [๋งŒ๋Šฅ]๋ฐฑ์„ค ๊ฑด๊ฐ•์„ ์ƒ๊ฐํ•œ ์š”๋ฆฌ์œ  900ml ๊ฐ€์„์‹์žฌ๋ฃŒ ์—„๋งˆ ๋ง›์ง‘ ๋ฏฟ๊ณ ๋จน๋Š” ์šฐ๋ฆฌ์ง‘ ๊ฑด๊ฐ•ํ•œ ์‹์žฌ๋ฃŒ ๋ด„๋‚ ์Šคํ† ์–ด'
6.0
  • 'ํ•œ๊ตญ์ •ํ’ˆ ํ—ˆ๋ฒŒ๋ผ์ดํ”„ ํ—ˆ๋ฒŒํ‹ฐ ํ—ˆ๋ฒŒ๋ฒ ๋ฒ„๋ฆฌ์ง€ ๋ง๊ตฌ ์—์ด'
  • '์Šคํ‚ค๋‹ˆ๋žฉ ๊ฐ€๋ฒผ์›Œ์ง€๋Š” ์‹œ์„œ์Šค ๋‹ค์ด์–ดํŠธ 14ํฌ cissus ๋ณด์กฐ์ œ ์”จ์„œ์Šค 15ํฌ ์˜ฌ๋ฐ”๋ฅธ์˜์–‘ ์ฃผ์‹ํšŒ์‚ฌ'
  • 'ํ”„๋กฌ๋ฐ”์ด์˜ค ์•„ํ”„๋ฆฌ์นด๋ง๊ณ  ์›Œํ„ฐ๋ฏน์Šค ๋ ˆ๋ชฌ๋ง› 2์ฃผ 14ํฌx1๋ฐ•์Šค ์•„ํ”„๋ฆฌ์นด ๋ง๊ณ  ์›Œํ„ฐ๋ฏน์Šค ๋ ˆ๋ชฌ 2์ฃผ ์ฃผ์‹ํšŒ์‚ฌ ํ”„๋กฌ๋ฐ”์ด์˜ค'
18.0
  • '์ธ์‚ฐ์ฃฝ์—ผ 9ํšŒ ์ž์ฃฝ์—ผ ๊ณ ์ฒด 60g ๋น„ํƒ€์ฝ”์–ด'
  • '[์ฒญ์ •์›] ์ˆœํ›„์ถ” 50g (๊ฒฝ์‚ฐ์ ) ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์Šค์ง€๋‹ท์ปด'
  • '๋ธŒ๋ž˜๊ทธ ์œ ๊ธฐ๋† ์ดˆ๋ชจ ์‚ฌ๊ณผ์‹์ดˆ 946ml ์ฒœ์—ฐ๋ฐœํšจ ์‹์ดˆํŠธ๋ฆญ ๋ฐ๋‹ˆ๊ทธ๋ฆฌ์Šค ์• ํ”Œ์‚ฌ์ด๋‹ค๋น„๋‹ˆ๊ฑฐ ๋“œ๋‹ˆ๊ทธ๋ฆฌ์Šค ์‚ฌ๊ณผ์‹์ดˆ 1000ml ์ธ์˜์ด๋„ค'
4.0
  • '๋™์› ์–‘๋ฐ˜ ์˜์–‘๋‹ญ์ฃฝ 285g ํƒœ์„ฑ์œ ํ†ต'
  • 'ํ‘ธ๋””๋ฒ„๋”” ์ˆซ์ž์น˜ํ‚จ๋„ˆ๊ฒŸ500g ๋ฏธ๋‹ˆ๊นŒ์Šค 2์ข… 480g 1+1 ๋ฏธ๋‹ˆ๋ˆ๊นŒ์Šค 1๊ฐœ+๋ฏธ๋‹ˆ์น˜ํ‚จ๊นŒ์Šค 1๊ฐœ ๋‹ค์†œํ”Œ๋žœ์ž‡'
  • '[์‚ผ์ง„์–ด๋ฌต] 100์‚ฌ๊ฐ 1๋ด‰ 320g (10๊ฐœ์ž…) (์ฃผ)๋™๋ฐฉ์œ ๋ž˜'
21.0
  • '[๋ฆฌ์˜ค์‚ฐํ† ] ํ• ๋ผํŽ˜๋‡จ ์Šฌ๋ผ์ด์Šค 540g (๊ฒฝ์‚ฐ์ ) ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์Šค์ง€๋‹ท์ปด'
  • '์‚ฌ์กฐ ์•ˆ์‹ฌ ๋‹ญ๊ฐ€์Šด์‚ด 90g ์ฃผ์‹ํšŒ์‚ฌ ํ‚ด๋ฒŒ๋ฆฌ๋งˆ์Šคํƒ€'
  • '์ƒ˜ํ‘œ ๊ฝ์น˜ 400g ์ง€์˜์‚ฐ์—…'
17.0
  • '๊ณฐํ‘œ ํ†ต๋ฐ€ ํ˜ธ๋–ก๋ฏน์Šค 450g x 4 ์ฝ”์ŠคํŠธ์ปท๋ชฐ'
  • 'CJ ํ•ซ์ผ€์ต๋ฏน์Šค 1kg ํ™ˆํŒŒํ‹ฐ ์—„๋งˆ์†๋ง› ์ƒ์ผํŒŒํ‹ฐ ํ™ˆ๋ฉ”์ด๋“œ ๋ฐ”์‚ญํ•œ ๋ฐ€ํ‚คํŠธ ๋งˆ์ด์ปดํผ๋‹ˆ'
  • '๊ณฐํ‘œ ํ†ต๋ฐ€ ํ˜ธ๋–ก๋ฏน์Šค 450g x 4๊ฐœ ์ฝ”์ŠคํŠธ์ฝ” ํ™ˆ๋ฒ ์ดํ‚น ํ˜ธ๋–ก ์žฌ๋ฃŒ ์ด์ง€์ฝ”์Šค'
20.0
  • '๋ผ์ง€ ๋จธ๋ฆฟ๊ณ ๊ธฐ ์Šฌ๋ผ์ด์Šค ์—…์†Œ์šฉ ๋จธ๋ฆฌ๊ณ ๊ธฐ 1kg ๋ผ์ง€๊ตญ๋ฐฅ์šฉ ์ ˆ๋‹จ ์ˆœ๋Œ€๊ตญ ์ฐฝ์—… ์žฌ๋ฃŒ -์„ ์ง€์—†๋Š” ๋งค์ฝค ๋ฐฑํ† ์ข…์ˆœ๋Œ€ 500g X 2ํŒฉ ํ‘ธ๋“œ์”จ'
  • 'ํ‘์—ผ์†Œ ์บ ํ•‘๊ณ ๊ธฐ ๊ตฌ์ด 300g ๊ตญ๋‚ด์‚ฐ ์•”์ปท์ „๋ฌธ ๋ณด์–‘์‹ ์—ผ์†Œ๊ณ ๊ธฐ ์ˆ˜์œก ์ „๊ณจ ํƒ• ์š”๋ฆฌ ์Œ์‹ โ—์ˆ˜์œก์šฉ ๋’ท๋‹ค๋ฆฌ์‚ด 500g (๊ป๋ฐ๊ธฐ+๊ณ ๊ธฐ) ํ‘์—ผ์†Œ์—ฐ๊ตฌ์†Œ'
  • 'ํŒŒํ‹ฐํ ๊ท€์กฑ ํ†ต๋ผ์ง€๋ฐ”๋ฒ ํ (5-10์ธ๋ถ„) ๋งŒํ™”๊ณ ๊ธฐ ์บ ํ•‘์Œ์‹ ์ง‘๋“ค์ด ์ถœ์žฅ ๊ฒฝ์ฃผ์‹œ์™ธ๋ฒ„์Šคํ„ฐ๋ฏธ๋„_1/6ํ•˜์ฒด ์ฃผ์‹ํšŒ์‚ฌ ํŒŒํ‹ฐํ'
15.0
  • '์นด์นด์˜ค๋‹™์Šค 500g ์˜ค๊ตฌ์˜ค๊ตฌ(5959)'
  • '์ œ์ฃผ์ฝฉ์ƒ๋‚ซ๋˜ ํŠนํ—ˆ๊ธฐ์ˆ ๋กœ ๋งŒ๋“  ๋ƒ„์ƒˆ์—†๊ณ  ๋ง›์žˆ๋Š” ๋‚ซ๋˜ 53 g x 7 ๊ฐœ ์ œ์ฃผ์ฝฉ ์ƒ๋‚ซ๋˜ 7 ๊ฐœ (์ฃผ)์œผ๋œธ์—˜์—”์—์Šค'
  • '[2+2] ํ•ด์ฐฌ๋“ค ์‚ฌ๊ณ„์ ˆ์Œˆ์žฅ 500G ๋ฉ”๊ฐ€๊ธ€๋กœ๋ฒŒ001'
14.0
  • '๋ชฌ์Šคํ„ฐ ์—๋„ˆ์ง€ ์šธํŠธ๋ผ ์‹œํŠธ๋ผ 355ml 1๊ฐœ ์Šฌ๋ฆผ์บ”_๊ฒŒํ† ๋ ˆ์ด ๋ ˆ๋ชฌ 240ml 30๊ฐœ ์ฃผ์‹ํšŒ์‚ฌ ์†ก๋ฏผ'
  • '๋ฏธ๋–ผ ํ•ซ์ดˆ์ฝ” ์˜ค๋ฆฌ์ง€๋‚  ๋ฏธ๋‹ˆ์Šคํ‹ฑ 40T+๋ณผํŽœ ๋ฏธ๋–ผ ๋งˆ์ผ๋“œ10T x2๊ฐœ+๋ณผํŽœ์ฆ์ • ์œ ๋‹ˆ์ฝ˜๋งˆํŠธ'
  • '์ผํ™” ์ดˆ์ •ํƒ„์‚ฐ์ˆ˜ 1.5L 6๊ฐœ ์ค‘ํŒจํŠธ_์Ÿˆ๋Ž… ์•„์›Œํ‹ฐ ์˜ค๋ Œ์ง€์ž๋ชฝ๋ธ”๋ž™ํ‹ฐ 500ml 12๊ฐœ ์ฃผ์‹ํšŒ์‚ฌ ์†ก๋ฏผ'
10.0
  • 'ํ•˜์ธ์ฆˆ ๋…ธ์Šˆ๊ฐ€ ์ผ€์ฐน (ํ•˜์ธ์ฆˆ ๋ฆฌ๋“€์Šค๋“œ์Šˆ๊ฐ€ ์ผ€์ฐน) 369g (์ฃผ)์•„์ด๋ฏธ์—ํ”„์—์Šค'
  • '๋Œ€์ƒ ์ฒญ์ •์› ์šฐ๋ฆฌ์•„์ด ์ผ€์ฐน 620g / 806kcal ์ˆ˜๋ฆฌZIP'
  • '์Šคํ…Œ์ดํฌ์†Œ์Šค ACE 260g ์Šคํ…Œ์ดํฌ์†Œ์Šค ์‹์ž์žฌ ๋งˆํŠธ ๋‹ค๋ผ์กฐ๋ช…'
16.0
  • '๋กํ‚ค๋ฆฟ์ง€ ๋ฉ”์ดํ”Œ์‹œ๋Ÿฝ 340g ์„ธ์ปจ๋“œ ๋ฒ ์ด์Šค'
  • '๋ณต์Œ์ž๋ฆฌ ๋”ธ๊ธฐ์žผ 500g 3๊ฐœ ๋”ธ๊ธฐ์žผ(3๊ฐœ) ๋”ธ๊ธฐ์žผ+์„ ๋ฌผ์šฉ ์ข…์ด๊ฐ€๋ฐฉ ๋”์จ๋“œ๋„์–ด'
  • 'Chocolate Hazelnut Spread ์„ ํ•œ์ƒ์ '
1.0
  • '[๊ณต์‹] ๋‹ฅํ„ฐ๊ฒŸ์ž‡ ํ‚ค์ฆˆ์ด๋ฎจ 20g x 14ํฌ (4+4ํ˜œํƒ) 8๋ฐ•์Šค [47%ํ• ์ธ+๋ฌด๋ฃŒ๋ฐฐ์†ก] ์ฃผ์‹ํšŒ์‚ฌ ๊ทธ๋ฆฟ์ธํ”ผ์Šค'
  • '๋Ÿฌ์‹œ์•„ ์ฐจ๊ฐ€๋ฒ„์„ฏ ์ฐจ ์›๋ฌผ 300g ์ฐจ๊ฐ€๋ฒ„์„ฏ 300g ๋†์—…ํšŒ์‚ฌ๋ฒ•์ธ ์ฃผ์‹ํšŒ์‚ฌ ๋‘์†์• ์•ฝ์ดˆ'
  • '์ปคํด๋žœ๋“œ์‹œ๊ทธ๋‹ˆ์ถฐ ๋งˆ๋ˆ„์นด ํ—ˆ๋‹ˆ 2.27kg ์™€์ผ๋“œํ”Œ๋ผ์›Œ ์›ฐ๋‹ˆ์Šค ํ”Œ๋ž˜๋‹›'
13.0
  • '์„œ์šธ์šฐ์œ  ๋™๋ฌผ์„ฑ ์ƒํฌ๋ฆผ 500ml ์ปคํ”ผ์ˆ ์ œ๋นต ์ƒํฌ๋ฆผ 1๊ฐœ[ํฌ์žฅ ๋ฏธ์„ ํƒ์‹œ ๋ฐฐ์†ก์ง€์—ฐ] ๋”๋“œ๋ฆผ'
  • '์„œ์šธ์šฐ์œ  ๋ฐ”๋ฆฌ์Šคํƒ€์ฆˆ ํœ˜ํ•‘ํฌ๋ฆผ 500g ์Šคํ”„๋ ˆ์ดํ˜• ๋ฐ”๋ฆฌ์Šคํƒ€ ํœ˜ํ•‘ํฌ๋ฆผ 500g_์•„์ด์Šค๋ฐ•์Šค ์˜ฌ๊ตฟ์œ ํ†ต'
  • '[์•„์ด์Šค๋ฐ•์Šค๋ฌด๋ฃŒ] ์„ ์ธ DB ํœ˜ํ•‘ํฌ๋ฆผ 1L ๋ฌด๊ฐ€๋‹น ํ˜ผํ•ฉ ์ƒํฌ๋ฆผ ์žฌ์ดF&B'
3.0
  • 'ํ‰์ฐฝ์•  ๊ฐ•์›๋„ ํ‰์ฐฝ ์ ˆ์ž„๋ฐฐ์ถ” 20kg ๊ณ ๋žญ์ง€ ํ†ต๋ฐฐ์ถ” ์ ˆ์ž„๋ฐฐ์ถ”10kg_12-22๊ธˆ์š”์ผ ๋ฐฐ์†ก์ถœ๋ฐœ์ผ ์ฃผ์‹ํšŒ์‚ฌ ์˜ฌ๋งˆ๋ฃจ(Allmaru)'
  • '๊น€๊ถŒํƒœ ์ „๋ผ๋„ ํฌ๊ธฐ ๋ฐฐ์ถ” ๊น€์น˜ ๊น€์žฅ๊น€์น˜ 2kg ์˜ฅ๊ณผ ๋ง›์žˆ๋Š” [2-3] ์ €์˜จ์ˆ™์„ฑ ๋ฌต์€์ง€ 5kg ์ฃผ์‹ํšŒ์‚ฌ ์šฐ์•„ํ•œ๋ผ'
  • '๋ณด๋ฆฌ๊น€์น˜ 3kg 5kg ์ œ์ฃผ์‚ฐ๋ณด๋ฆฌ [100%๊ตญ๋‚ด์‚ฐ] ํ•œ๋ฐฑ๊น€์น˜ ์†ก๋„์ '
8.0
  • '[์‹ ์„ธ๊ณ„ ๊ทœ๊ฒฉ](์‹ ์„ธ๊ณ„ ๋ณธ์ )๋ ๊ตด๋ฆฌ์˜ค์˜ฌ๋ฆฌ๋ธŒ์•ค์ผ€์ดํผ์†Œ์Šค ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์Šค์ง€๋‹ท์ปด'
  • 'ํ”„๋ ˆ์‹œ๋ฐ€ ๋ฒ ์ด์ปจํฌ๋ฆผํŒŒ์Šคํƒ€ 630g 1ํŒฉ 630g ร— 2ํŒฉ ์— ํˆฌ์ปค๋จธ์Šค'
  • '[์ฟ ์บฃ][์ฟ ์บฃ๋ฉ”์ด๋“œ] ๋ Œ์ง€์ฟ ์บฃ ๋งˆ๋ผ๋กœ์ œ ์ฐœ๋‹ญ 230g X 3ํŒฉ ๋””ํœด๋‹ˆ'
11.0
  • '์ •๋ฏธ์†Œ ์ญˆ๊พธ๋ฏธ ๋ณถ์Œ 450g 2์ธ ์ง‘๋“ค์ด ์Œ์‹ ์บ ํ•‘ ์š”๋ฆฌ ์ฃผ์‹ํšŒ์‚ฌ ๋ฏน์Šค์•ค๋งฅ์Šค(MIXNMAX CO.,LTD.)'
  • '์ƒˆ๋ฒฝ์žฅ์–ด ๊ตญ์‚ฐ ์žํฌ๋‹ˆ์นด ํ’์ฒœ ๋ฏผ๋ฌผ์žฅ์–ด 1kg ์†์งˆ ํ›„ 750g์ด๋‚ด ์ดˆ๋ฒŒ์žฅ์–ด 1kg(์žํฌ๋‹ˆ์นด ์ˆœ์‚ด 500g๋‚ด์™ธ) ์ƒˆ๋ฒฝ์ปดํผ๋‹ˆ ์ฃผ์‹ํšŒ์‚ฌ'
  • '์—„๋งˆ์• ๋ฐ”๋‹ค ์ƒˆ์šฐ์„ž์ธ ์ง€๋ฆฌ๋ฉธ์น˜ 1.5kg ํŒ”์ด์ผ์‚ผ์ผ์˜ค'
7.0
  • '์‚ผ์–‘ ํฐ์ปต๊นŒ๋ฅด๋ณด๋ถˆ๋‹ญ๋ณถ์Œ๋ฉด 105g x 4๊ฐœ ๊นŒ๋ฅด๋ณด๋ถˆ๋‹ญ๋ณถ์Œ๋ฉด 130g x 4 ํ”Œ๋žœํŠธ๋”ํ“จ์ฒ˜'
  • '[1+1 ๋ƒ‰๋ฉด ๊ณจ๋ผ๋‹ด๊ธฐ] CJ ๋™์น˜๋ฏธ ๋ฌผ๋ƒ‰๋ฉด ๋น„๋น”๋ƒ‰๋ฉด ์™ธ 20์ข… [5+5]ํ•จํฅ๋น„๋น”๋ƒ‰๋ฉด์†Œ์Šค85g ์”จ์ œ์ด์ œ์ผ์ œ๋‹น (์ฃผ)'
  • '์ฒญ์ˆ˜ ํฌ์žฅ๊ตญ์ˆ˜ 3.75KG / 37์ธ๋ถ„ ์ž”์น˜ ์˜›๋‚  ๋ฉธ์น˜ ๋น„๋น”๊ตญ์ˆ˜ ์†Œ๋ฉด (์ฃผ)์ •์ด๋น„์—์Šค'
5.0
  • '์ฒญ๋„ ์•„์ด์Šคํ™์‹œ ํƒˆํ”ผ 3kg 40๊ณผ๋‚ด์™ธ 05_๋Œ€๋ด‰ ํƒˆํ”ผ 3kg 15-20๊ณผ ๊ฐ๋ฏธ์ธ์˜๋†์กฐํ•ฉ๋ฒ•์ธ'
  • '๊ตญ์‚ฐ ์ฅ๋ˆˆ์ด์ฝฉ ์ฝฉ๋‚˜๋ฌผ์ฝฉ 1kg ์•ฝ์ฝฉ ์„œ๋ชฉํƒœ ๊ฒ€์€์ฝฉ 8. ์ช„์„œ๋ณถ์€ ์„œ๋ฆฌํƒœ๊ฐ€๋ฃจ 500g ์ฃผ์‹ํšŒ์‚ฌ ํƒœ๊ทน์ธ ๋†์—…ํšŒ์‚ฌ๋ฒ•์ธ'
  • '๋ฒ ํŠธ๋‚จ์„ ๋ฌผ ๋ฐ˜๊ฑด์กฐ ๋ง๊ณ  ๋ฒ ํŠธ๋‚จ๊ฑด๋ง๊ณ  ๋ง๋žญ์ด 100G X 10๊ฐœ์ž… ์œ ์›”์˜๋ฐ”๋‹ค'
19.0
  • '๋ฐ•์žฌ์„œ๋ช…์ธ ์•ˆ๋™์†Œ์ฃผ ์–‘๋ฐ˜ํƒˆ 800ml ๋ช…์ธ์•ˆ๋™์†Œ์ฃผ'
  • 'ํ•ด์ฐฝ์ฃผ์กฐ ํ•ด์ฐฝ๋ง‰๊ฑธ๋ฆฌ 9๋„ ํ”„๋ฆฌ๋ฏธ์—„ ๋ง‰๊ฑธ๋ฆฌ ์บ ํ•‘ ์œ„์Šคํ‚ค ์ฐจ๋ฐ• ์™€์ธ ํ•„์ˆ˜ํ…œ ๊ธ€๋žจํ•‘ ๊ฐ์„ฑ์‚ฌ์ง„ ๋†์—…ํšŒ์‚ฌ๋ฒ•์ธ ์ˆ ๋‹ดํ™” ์ฃผ์‹ํšŒ์‚ฌ ์ง๋งค์žฅ์ง€์ '
  • '๋‹ค๋†๋ฐ”์ด์˜ค ๊ฐ€๋ฌด์น˜์†Œ์ฃผ 43๋„ 375ml ํ•ญ์•„๋ฆฌ์ˆ™์„ฑ ๋†์—…๋ฒ•์ธ ์šฐ๋ฆฌ๋„๊ฐ€ (์ฃผ) ์„œ์šธ์ง€์ '

Evaluation

Metrics

Label Metric
all 0.9180

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("mini1013/master_item_fd")
# Run inference
preds = model("ํฌ์นด๋ฆฌ์Šค์›จํŠธ 245ml 1๊ฐœ ์ค‘ํŒจํŠธ_๋ฝ€๋กœ๋กœ(๋ฐ€ํฌ๋ง›) 235ML X 24๋ณ‘ ์ฃผ์‹ํšŒ์‚ฌ ์†ก๋ฏผ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.1979 30
Label Training Sample Count
0.0 448
1.0 579
2.0 800
3.0 552
4.0 1049
5.0 350
6.0 800
7.0 100
8.0 400
9.0 414
10.0 581
11.0 275
12.0 450
13.0 300
14.0 600
15.0 422
16.0 400
17.0 200
18.0 571
19.0 50
20.0 346
21.0 450

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0006 1 0.4086 -
0.0316 50 0.3967 -
0.0631 100 0.3705 -
0.0947 150 0.3541 -
0.1263 200 0.2971 -
0.1578 250 0.2651 -
0.1894 300 0.2404 -
0.2210 350 0.1946 -
0.2525 400 0.1848 -
0.2841 450 0.1706 -
0.3157 500 0.1394 -
0.3472 550 0.1364 -
0.3788 600 0.1178 -
0.4104 650 0.0926 -
0.4419 700 0.0949 -
0.4735 750 0.0732 -
0.5051 800 0.0806 -
0.5366 850 0.0648 -
0.5682 900 0.0707 -
0.5997 950 0.0523 -
0.6313 1000 0.0529 -
0.6629 1050 0.0491 -
0.6944 1100 0.0486 -
0.7260 1150 0.0369 -
0.7576 1200 0.0296 -
0.7891 1250 0.0303 -
0.8207 1300 0.0232 -
0.8523 1350 0.0281 -
0.8838 1400 0.0178 -
0.9154 1450 0.0346 -
0.9470 1500 0.025 -
0.9785 1550 0.0218 -
1.0101 1600 0.0335 -
1.0417 1650 0.0206 -
1.0732 1700 0.0168 -
1.1048 1750 0.0294 -
1.1364 1800 0.0219 -
1.1679 1850 0.0176 -
1.1995 1900 0.0196 -
1.2311 1950 0.0141 -
1.2626 2000 0.0031 -
1.2942 2050 0.0131 -
1.3258 2100 0.0158 -
1.3573 2150 0.0121 -
1.3889 2200 0.0088 -
1.4205 2250 0.0047 -
1.4520 2300 0.0138 -
1.4836 2350 0.0029 -
1.5152 2400 0.0063 -
1.5467 2450 0.0042 -
1.5783 2500 0.0015 -
1.6098 2550 0.0078 -
1.6414 2600 0.0014 -
1.6730 2650 0.0055 -
1.7045 2700 0.0011 -
1.7361 2750 0.0052 -
1.7677 2800 0.0018 -
1.7992 2850 0.003 -
1.8308 2900 0.004 -
1.8624 2950 0.0006 -
1.8939 3000 0.0058 -
1.9255 3050 0.0004 -
1.9571 3100 0.0028 -
1.9886 3150 0.0005 -
2.0202 3200 0.0006 -
2.0518 3250 0.0016 -
2.0833 3300 0.0036 -
2.1149 3350 0.0009 -
2.1465 3400 0.001 -
2.1780 3450 0.0007 -
2.2096 3500 0.0003 -
2.2412 3550 0.0003 -
2.2727 3600 0.0004 -
2.3043 3650 0.0002 -
2.3359 3700 0.0002 -
2.3674 3750 0.0002 -
2.3990 3800 0.003 -
2.4306 3850 0.0004 -
2.4621 3900 0.0013 -
2.4937 3950 0.0003 -
2.5253 4000 0.0002 -
2.5568 4050 0.0001 -
2.5884 4100 0.0002 -
2.6199 4150 0.0001 -
2.6515 4200 0.0003 -
2.6831 4250 0.0003 -
2.7146 4300 0.0002 -
2.7462 4350 0.0001 -
2.7778 4400 0.0018 -
2.8093 4450 0.0005 -
2.8409 4500 0.0001 -
2.8725 4550 0.0003 -
2.9040 4600 0.0001 -
2.9356 4650 0.0002 -
2.9672 4700 0.0002 -
2.9987 4750 0.0002 -
3.0303 4800 0.0018 -
3.0619 4850 0.0001 -
3.0934 4900 0.0002 -
3.125 4950 0.0001 -
3.1566 5000 0.0002 -
3.1881 5050 0.0004 -
3.2197 5100 0.0001 -
3.2513 5150 0.0001 -
3.2828 5200 0.0002 -
3.3144 5250 0.0003 -
3.3460 5300 0.0001 -
3.3775 5350 0.0003 -
3.4091 5400 0.0001 -
3.4407 5450 0.0001 -
3.4722 5500 0.0001 -
3.5038 5550 0.0003 -
3.5354 5600 0.0002 -
3.5669 5650 0.0001 -
3.5985 5700 0.0005 -
3.6301 5750 0.0003 -
3.6616 5800 0.0001 -
3.6932 5850 0.0003 -
3.7247 5900 0.0001 -
3.7563 5950 0.0001 -
3.7879 6000 0.0001 -
3.8194 6050 0.0006 -
3.8510 6100 0.0002 -
3.8826 6150 0.0004 -
3.9141 6200 0.0001 -
3.9457 6250 0.0001 -
3.9773 6300 0.0001 -
4.0088 6350 0.0002 -
4.0404 6400 0.0001 -
4.0720 6450 0.0 -
4.1035 6500 0.0001 -
4.1351 6550 0.0001 -
4.1667 6600 0.0 -
4.1982 6650 0.0 -
4.2298 6700 0.0 -
4.2614 6750 0.0 -
4.2929 6800 0.0001 -
4.3245 6850 0.0 -
4.3561 6900 0.0 -
4.3876 6950 0.0002 -
4.4192 7000 0.0007 -
4.4508 7050 0.0018 -
4.4823 7100 0.0001 -
4.5139 7150 0.0001 -
4.5455 7200 0.0001 -
4.5770 7250 0.0003 -
4.6086 7300 0.0001 -
4.6402 7350 0.0008 -
4.6717 7400 0.0001 -
4.7033 7450 0.0 -
4.7348 7500 0.0001 -
4.7664 7550 0.0001 -
4.7980 7600 0.0 -
4.8295 7650 0.0 -
4.8611 7700 0.0 -
4.8927 7750 0.0019 -
4.9242 7800 0.0 -
4.9558 7850 0.0 -
4.9874 7900 0.001 -
5.0189 7950 0.0 -
5.0505 8000 0.0011 -
5.0821 8050 0.0002 -
5.1136 8100 0.0004 -
5.1452 8150 0.0 -
5.1768 8200 0.0018 -
5.2083 8250 0.0001 -
5.2399 8300 0.0 -
5.2715 8350 0.0018 -
5.3030 8400 0.0 -
5.3346 8450 0.0005 -
5.3662 8500 0.0001 -
5.3977 8550 0.0 -
5.4293 8600 0.0 -
5.4609 8650 0.0001 -
5.4924 8700 0.0 -
5.5240 8750 0.0001 -
5.5556 8800 0.0 -
5.5871 8850 0.0001 -
5.6187 8900 0.0001 -
5.6503 8950 0.0 -
5.6818 9000 0.0001 -
5.7134 9050 0.0008 -
5.7449 9100 0.0001 -
5.7765 9150 0.0 -
5.8081 9200 0.0008 -
5.8396 9250 0.0001 -
5.8712 9300 0.0 -
5.9028 9350 0.0001 -
5.9343 9400 0.0 -
5.9659 9450 0.0 -
5.9975 9500 0.0001 -
6.0290 9550 0.0 -
6.0606 9600 0.0 -
6.0922 9650 0.0 -
6.1237 9700 0.0 -
6.1553 9750 0.0 -
6.1869 9800 0.0 -
6.2184 9850 0.0 -
6.25 9900 0.0 -
6.2816 9950 0.0 -
6.3131 10000 0.0 -
6.3447 10050 0.0 -
6.3763 10100 0.0 -
6.4078 10150 0.0 -
6.4394 10200 0.0 -
6.4710 10250 0.0 -
6.5025 10300 0.0001 -
6.5341 10350 0.0 -
6.5657 10400 0.0001 -
6.5972 10450 0.0 -
6.6288 10500 0.0 -
6.6604 10550 0.0 -
6.6919 10600 0.0 -
6.7235 10650 0.0 -
6.7551 10700 0.0 -
6.7866 10750 0.0 -
6.8182 10800 0.0 -
6.8497 10850 0.0 -
6.8813 10900 0.0002 -
6.9129 10950 0.0016 -
6.9444 11000 0.0 -
6.9760 11050 0.0002 -
7.0076 11100 0.0 -
7.0391 11150 0.0006 -
7.0707 11200 0.0 -
7.1023 11250 0.0 -
7.1338 11300 0.0 -
7.1654 11350 0.0 -
7.1970 11400 0.0 -
7.2285 11450 0.0 -
7.2601 11500 0.0 -
7.2917 11550 0.0 -
7.3232 11600 0.0 -
7.3548 11650 0.0 -
7.3864 11700 0.0 -
7.4179 11750 0.0 -
7.4495 11800 0.0 -
7.4811 11850 0.0 -
7.5126 11900 0.0 -
7.5442 11950 0.0 -
7.5758 12000 0.0 -
7.6073 12050 0.0 -
7.6389 12100 0.0 -
7.6705 12150 0.0 -
7.7020 12200 0.0 -
7.7336 12250 0.0 -
7.7652 12300 0.0 -
7.7967 12350 0.0003 -
7.8283 12400 0.0001 -
7.8598 12450 0.0 -
7.8914 12500 0.0 -
7.9230 12550 0.0 -
7.9545 12600 0.0 -
7.9861 12650 0.0 -
8.0177 12700 0.0001 -
8.0492 12750 0.0 -
8.0808 12800 0.0 -
8.1124 12850 0.0 -
8.1439 12900 0.0 -
8.1755 12950 0.0 -
8.2071 13000 0.0 -
8.2386 13050 0.0 -
8.2702 13100 0.0 -
8.3018 13150 0.0 -
8.3333 13200 0.0 -
8.3649 13250 0.0 -
8.3965 13300 0.0 -
8.4280 13350 0.0 -
8.4596 13400 0.0 -
8.4912 13450 0.0 -
8.5227 13500 0.0 -
8.5543 13550 0.0 -
8.5859 13600 0.0 -
8.6174 13650 0.0 -
8.6490 13700 0.0021 -
8.6806 13750 0.0006 -
8.7121 13800 0.0002 -
8.7437 13850 0.0013 -
8.7753 13900 0.0 -
8.8068 13950 0.0 -
8.8384 14000 0.0 -
8.8699 14050 0.0 -
8.9015 14100 0.0 -
8.9331 14150 0.0 -
8.9646 14200 0.0 -
8.9962 14250 0.0 -
9.0278 14300 0.0 -
9.0593 14350 0.0 -
9.0909 14400 0.0 -
9.1225 14450 0.0 -
9.1540 14500 0.0 -
9.1856 14550 0.0002 -
9.2172 14600 0.0 -
9.2487 14650 0.0 -
9.2803 14700 0.0 -
9.3119 14750 0.0 -
9.3434 14800 0.0 -
9.375 14850 0.0 -
9.4066 14900 0.0 -
9.4381 14950 0.0 -
9.4697 15000 0.0 -
9.5013 15050 0.0 -
9.5328 15100 0.0 -
9.5644 15150 0.0 -
9.5960 15200 0.0 -
9.6275 15250 0.0 -
9.6591 15300 0.0 -
9.6907 15350 0.0 -
9.7222 15400 0.0002 -
9.7538 15450 0.0 -
9.7854 15500 0.0 -
9.8169 15550 0.0 -
9.8485 15600 0.0 -
9.8801 15650 0.0 -
9.9116 15700 0.0001 -
9.9432 15750 0.0 -
9.9747 15800 0.0003 -
10.0063 15850 0.0 -
10.0379 15900 0.0 -
10.0694 15950 0.0001 -
10.1010 16000 0.0 -
10.1326 16050 0.0 -
10.1641 16100 0.0 -
10.1957 16150 0.0 -
10.2273 16200 0.0 -
10.2588 16250 0.0 -
10.2904 16300 0.0 -
10.3220 16350 0.0 -
10.3535 16400 0.0008 -
10.3851 16450 0.0 -
10.4167 16500 0.0 -
10.4482 16550 0.0 -
10.4798 16600 0.0 -
10.5114 16650 0.0 -
10.5429 16700 0.0 -
10.5745 16750 0.0 -
10.6061 16800 0.0 -
10.6376 16850 0.0 -
10.6692 16900 0.0009 -
10.7008 16950 0.0 -
10.7323 17000 0.0 -
10.7639 17050 0.0 -
10.7955 17100 0.0 -
10.8270 17150 0.0 -
10.8586 17200 0.0 -
10.8902 17250 0.0 -
10.9217 17300 0.0 -
10.9533 17350 0.0 -
10.9848 17400 0.0 -
11.0164 17450 0.0001 -
11.0480 17500 0.0 -
11.0795 17550 0.0 -
11.1111 17600 0.0 -
11.1427 17650 0.0 -
11.1742 17700 0.0 -
11.2058 17750 0.0 -
11.2374 17800 0.0 -
11.2689 17850 0.0 -
11.3005 17900 0.0 -
11.3321 17950 0.0 -
11.3636 18000 0.0 -
11.3952 18050 0.0 -
11.4268 18100 0.0 -
11.4583 18150 0.0 -
11.4899 18200 0.0003 -
11.5215 18250 0.0 -
11.5530 18300 0.0005 -
11.5846 18350 0.0 -
11.6162 18400 0.0 -
11.6477 18450 0.0 -
11.6793 18500 0.0 -
11.7109 18550 0.0 -
11.7424 18600 0.0 -
11.7740 18650 0.0 -
11.8056 18700 0.0 -
11.8371 18750 0.0 -
11.8687 18800 0.0 -
11.9003 18850 0.0 -
11.9318 18900 0.0 -
11.9634 18950 0.0 -
11.9949 19000 0.0 -
12.0265 19050 0.0 -
12.0581 19100 0.0 -
12.0896 19150 0.0 -
12.1212 19200 0.0 -
12.1528 19250 0.0 -
12.1843 19300 0.0 -
12.2159 19350 0.0 -
12.2475 19400 0.0 -
12.2790 19450 0.0 -
12.3106 19500 0.0 -
12.3422 19550 0.0 -
12.3737 19600 0.0 -
12.4053 19650 0.0 -
12.4369 19700 0.0 -
12.4684 19750 0.0 -
12.5 19800 0.0 -
12.5316 19850 0.0 -
12.5631 19900 0.0 -
12.5947 19950 0.0 -
12.6263 20000 0.0 -
12.6578 20050 0.0 -
12.6894 20100 0.0 -
12.7210 20150 0.0 -
12.7525 20200 0.0 -
12.7841 20250 0.0 -
12.8157 20300 0.0 -
12.8472 20350 0.0 -
12.8788 20400 0.0 -
12.9104 20450 0.0 -
12.9419 20500 0.0 -
12.9735 20550 0.0 -
13.0051 20600 0.0 -
13.0366 20650 0.0002 -
13.0682 20700 0.0 -
13.0997 20750 0.0 -
13.1313 20800 0.0 -
13.1629 20850 0.0 -
13.1944 20900 0.0 -
13.2260 20950 0.0 -
13.2576 21000 0.0 -
13.2891 21050 0.0015 -
13.3207 21100 0.0 -
13.3523 21150 0.0 -
13.3838 21200 0.0 -
13.4154 21250 0.0 -
13.4470 21300 0.0 -
13.4785 21350 0.0 -
13.5101 21400 0.0 -
13.5417 21450 0.0 -
13.5732 21500 0.0 -
13.6048 21550 0.0 -
13.6364 21600 0.0 -
13.6679 21650 0.0 -
13.6995 21700 0.0 -
13.7311 21750 0.0 -
13.7626 21800 0.0 -
13.7942 21850 0.0 -
13.8258 21900 0.0 -
13.8573 21950 0.0 -
13.8889 22000 0.0 -
13.9205 22050 0.0 -
13.9520 22100 0.0 -
13.9836 22150 0.0 -
14.0152 22200 0.0 -
14.0467 22250 0.0 -
14.0783 22300 0.0 -
14.1098 22350 0.0 -
14.1414 22400 0.0 -
14.1730 22450 0.0 -
14.2045 22500 0.0002 -
14.2361 22550 0.0 -
14.2677 22600 0.002 -
14.2992 22650 0.0 -
14.3308 22700 0.0 -
14.3624 22750 0.0 -
14.3939 22800 0.0 -
14.4255 22850 0.0 -
14.4571 22900 0.0 -
14.4886 22950 0.0 -
14.5202 23000 0.0 -
14.5518 23050 0.0 -
14.5833 23100 0.0 -
14.6149 23150 0.0 -
14.6465 23200 0.0 -
14.6780 23250 0.0 -
14.7096 23300 0.0 -
14.7412 23350 0.0 -
14.7727 23400 0.0 -
14.8043 23450 0.0 -
14.8359 23500 0.0 -
14.8674 23550 0.0 -
14.8990 23600 0.0 -
14.9306 23650 0.0 -
14.9621 23700 0.0 -
14.9937 23750 0.0 -
15.0253 23800 0.0 -
15.0568 23850 0.0 -
15.0884 23900 0.0 -
15.1199 23950 0.0 -
15.1515 24000 0.0 -
15.1831 24050 0.0 -
15.2146 24100 0.0 -
15.2462 24150 0.0 -
15.2778 24200 0.0 -
15.3093 24250 0.0 -
15.3409 24300 0.0 -
15.3725 24350 0.0 -
15.4040 24400 0.0 -
15.4356 24450 0.0 -
15.4672 24500 0.0 -
15.4987 24550 0.0 -
15.5303 24600 0.0 -
15.5619 24650 0.0 -
15.5934 24700 0.0 -
15.625 24750 0.0 -
15.6566 24800 0.0 -
15.6881 24850 0.0 -
15.7197 24900 0.0 -
15.7513 24950 0.0 -
15.7828 25000 0.0 -
15.8144 25050 0.0 -
15.8460 25100 0.0 -
15.8775 25150 0.0 -
15.9091 25200 0.0 -
15.9407 25250 0.0 -
15.9722 25300 0.0 -
16.0038 25350 0.0 -
16.0354 25400 0.0 -
16.0669 25450 0.0 -
16.0985 25500 0.0 -
16.1301 25550 0.0 -
16.1616 25600 0.0 -
16.1932 25650 0.0 -
16.2247 25700 0.0 -
16.2563 25750 0.0 -
16.2879 25800 0.0 -
16.3194 25850 0.0 -
16.3510 25900 0.0 -
16.3826 25950 0.0 -
16.4141 26000 0.0 -
16.4457 26050 0.0 -
16.4773 26100 0.0 -
16.5088 26150 0.0 -
16.5404 26200 0.0 -
16.5720 26250 0.0 -
16.6035 26300 0.0 -
16.6351 26350 0.0 -
16.6667 26400 0.0 -
16.6982 26450 0.0 -
16.7298 26500 0.0 -
16.7614 26550 0.0 -
16.7929 26600 0.0 -
16.8245 26650 0.0 -
16.8561 26700 0.0 -
16.8876 26750 0.0 -
16.9192 26800 0.0 -
16.9508 26850 0.0 -
16.9823 26900 0.0 -
17.0139 26950 0.0 -
17.0455 27000 0.0 -
17.0770 27050 0.0 -
17.1086 27100 0.0 -
17.1402 27150 0.0 -
17.1717 27200 0.0 -
17.2033 27250 0.0 -
17.2348 27300 0.0 -
17.2664 27350 0.0 -
17.2980 27400 0.0 -
17.3295 27450 0.0 -
17.3611 27500 0.0 -
17.3927 27550 0.0 -
17.4242 27600 0.0 -
17.4558 27650 0.0 -
17.4874 27700 0.0 -
17.5189 27750 0.0 -
17.5505 27800 0.0 -
17.5821 27850 0.0 -
17.6136 27900 0.0 -
17.6452 27950 0.0 -
17.6768 28000 0.0 -
17.7083 28050 0.0 -
17.7399 28100 0.0 -
17.7715 28150 0.0 -
17.8030 28200 0.0 -
17.8346 28250 0.0 -
17.8662 28300 0.0 -
17.8977 28350 0.0 -
17.9293 28400 0.0 -
17.9609 28450 0.0 -
17.9924 28500 0.0 -
18.0240 28550 0.0 -
18.0556 28600 0.0 -
18.0871 28650 0.0 -
18.1187 28700 0.0 -
18.1503 28750 0.0 -
18.1818 28800 0.0 -
18.2134 28850 0.0 -
18.2449 28900 0.0 -
18.2765 28950 0.0 -
18.3081 29000 0.0 -
18.3396 29050 0.0 -
18.3712 29100 0.0 -
18.4028 29150 0.0 -
18.4343 29200 0.0 -
18.4659 29250 0.0 -
18.4975 29300 0.0 -
18.5290 29350 0.0 -
18.5606 29400 0.0 -
18.5922 29450 0.0 -
18.6237 29500 0.0 -
18.6553 29550 0.0 -
18.6869 29600 0.0 -
18.7184 29650 0.0 -
18.75 29700 0.0 -
18.7816 29750 0.0 -
18.8131 29800 0.0 -
18.8447 29850 0.0 -
18.8763 29900 0.0 -
18.9078 29950 0.0 -
18.9394 30000 0.0 -
18.9710 30050 0.0 -
19.0025 30100 0.0 -
19.0341 30150 0.0 -
19.0657 30200 0.0 -
19.0972 30250 0.0 -
19.1288 30300 0.0 -
19.1604 30350 0.0 -
19.1919 30400 0.0 -
19.2235 30450 0.0 -
19.2551 30500 0.0 -
19.2866 30550 0.0 -
19.3182 30600 0.0 -
19.3497 30650 0.0 -
19.3813 30700 0.0 -
19.4129 30750 0.0 -
19.4444 30800 0.0 -
19.4760 30850 0.0 -
19.5076 30900 0.0 -
19.5391 30950 0.0 -
19.5707 31000 0.0 -
19.6023 31050 0.0 -
19.6338 31100 0.0 -
19.6654 31150 0.0 -
19.6970 31200 0.0 -
19.7285 31250 0.0 -
19.7601 31300 0.0 -
19.7917 31350 0.0 -
19.8232 31400 0.0 -
19.8548 31450 0.0 -
19.8864 31500 0.0 -
19.9179 31550 0.0 -
19.9495 31600 0.0 -
19.9811 31650 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}