metadata
base_model: klue/roberta-base
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
๐ฏ๊ตญ์ฐ์ ์กฐ์ฒญ๐ฏ ์์ ์ค๋๋ค ์ ๋ฌผ์ธํธ ๋ต๋กํ 18P 9์ 3์ผ ์ถ๊ณ (4์ผ~5์ผ
๋์ฐฉ์์ )_๊ฒฌ๊ณผ์คํ์
(์ค๋ฆฌ์ง๋8p+์คํ์
10p)_๊ฐ์ฌ์ ๋ง์์ ์ ํฉ๋๋ค ์ํ๋ฃป(st.fruit)
- text: ํฌ์นด๋ฆฌ์ค์จํธ 245ml 1๊ฐ ์คํจํธ_๋ฝ๋ก๋ก(๋ฐํฌ๋ง) 235ML X 24๋ณ ์ฃผ์ํ์ฌ ์ก๋ฏผ
- text: ํฌ์นด๋ฆฌ์ค์จํธ 245ml 1๊ฐ ๋ฏธ๋์บ_ํฐ์คํผ ์ค์ํธ ์๋ฉ๋ฆฌ์นด๋
ธ 200ml 30๊ฐ ๋์์์ฌ
- text: >-
์์ดํฌ๋ฒ ์ด๋น ๋ค์ด์ดํธ ๋จ๋ฐฑ์ง ์์ดํฌ ๋ง์๋ ์์ฌ๋์ฉ ์๋จ ์์ ๋ธ๊ธฐ๋ง 750g 3+ํด๋ฉ๋ฐ์ค
๊ตฌ์ฑ_์ด์ฝ+์ค์์ฝ+๋ง์๋ฉ๋ก์ด์ฝ_ํด๋ฉ๋ฐ์ค+ํํฌ๋ณดํ 1๊ฐ+ํ์ดํธ๋ณดํ 1๊ฐ ์ฃผ์ํ์ฌ ์ฌ๋ก์ฐ๋ก์ผ
- text: ํฌ๋ด ์ด์๊ณ ์ํฐ์ง XV ์ค๋ฉ๊ฐ3 ๋ฏธ๋ ์นด์ ๋กํ
ํฌ๋ด ์ด์๊ณ ์๋ฌผ์ฑ ์ํฐ์ง ์ค๋ฉ๊ฐ3โณ (์ฃผ)ํฌํฐ๋ธ๋ดํธ๋ฆฌ์
inference: true
model-index:
- name: SetFit with klue/roberta-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9180474602529828
name: Metric
SetFit with klue/roberta-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: klue/roberta-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 22 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
9.0 |
|
0.0 |
|
2.0 |
|
12.0 |
|
6.0 |
|
18.0 |
|
4.0 |
|
21.0 |
|
17.0 |
|
20.0 |
|
15.0 |
|
14.0 |
|
10.0 |
|
16.0 |
|
1.0 |
|
13.0 |
|
3.0 |
|
8.0 |
|
11.0 |
|
7.0 |
|
5.0 |
|
19.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.9180 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("mini1013/master_item_fd")
# Run inference
preds = model("ํฌ์นด๋ฆฌ์ค์จํธ 245ml 1๊ฐ ์คํจํธ_๋ฝ๋ก๋ก(๋ฐํฌ๋ง) 235ML X 24๋ณ ์ฃผ์ํ์ฌ ์ก๋ฏผ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.1979 | 30 |
Label | Training Sample Count |
---|---|
0.0 | 448 |
1.0 | 579 |
2.0 | 800 |
3.0 | 552 |
4.0 | 1049 |
5.0 | 350 |
6.0 | 800 |
7.0 | 100 |
8.0 | 400 |
9.0 | 414 |
10.0 | 581 |
11.0 | 275 |
12.0 | 450 |
13.0 | 300 |
14.0 | 600 |
15.0 | 422 |
16.0 | 400 |
17.0 | 200 |
18.0 | 571 |
19.0 | 50 |
20.0 | 346 |
21.0 | 450 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.4086 | - |
0.0316 | 50 | 0.3967 | - |
0.0631 | 100 | 0.3705 | - |
0.0947 | 150 | 0.3541 | - |
0.1263 | 200 | 0.2971 | - |
0.1578 | 250 | 0.2651 | - |
0.1894 | 300 | 0.2404 | - |
0.2210 | 350 | 0.1946 | - |
0.2525 | 400 | 0.1848 | - |
0.2841 | 450 | 0.1706 | - |
0.3157 | 500 | 0.1394 | - |
0.3472 | 550 | 0.1364 | - |
0.3788 | 600 | 0.1178 | - |
0.4104 | 650 | 0.0926 | - |
0.4419 | 700 | 0.0949 | - |
0.4735 | 750 | 0.0732 | - |
0.5051 | 800 | 0.0806 | - |
0.5366 | 850 | 0.0648 | - |
0.5682 | 900 | 0.0707 | - |
0.5997 | 950 | 0.0523 | - |
0.6313 | 1000 | 0.0529 | - |
0.6629 | 1050 | 0.0491 | - |
0.6944 | 1100 | 0.0486 | - |
0.7260 | 1150 | 0.0369 | - |
0.7576 | 1200 | 0.0296 | - |
0.7891 | 1250 | 0.0303 | - |
0.8207 | 1300 | 0.0232 | - |
0.8523 | 1350 | 0.0281 | - |
0.8838 | 1400 | 0.0178 | - |
0.9154 | 1450 | 0.0346 | - |
0.9470 | 1500 | 0.025 | - |
0.9785 | 1550 | 0.0218 | - |
1.0101 | 1600 | 0.0335 | - |
1.0417 | 1650 | 0.0206 | - |
1.0732 | 1700 | 0.0168 | - |
1.1048 | 1750 | 0.0294 | - |
1.1364 | 1800 | 0.0219 | - |
1.1679 | 1850 | 0.0176 | - |
1.1995 | 1900 | 0.0196 | - |
1.2311 | 1950 | 0.0141 | - |
1.2626 | 2000 | 0.0031 | - |
1.2942 | 2050 | 0.0131 | - |
1.3258 | 2100 | 0.0158 | - |
1.3573 | 2150 | 0.0121 | - |
1.3889 | 2200 | 0.0088 | - |
1.4205 | 2250 | 0.0047 | - |
1.4520 | 2300 | 0.0138 | - |
1.4836 | 2350 | 0.0029 | - |
1.5152 | 2400 | 0.0063 | - |
1.5467 | 2450 | 0.0042 | - |
1.5783 | 2500 | 0.0015 | - |
1.6098 | 2550 | 0.0078 | - |
1.6414 | 2600 | 0.0014 | - |
1.6730 | 2650 | 0.0055 | - |
1.7045 | 2700 | 0.0011 | - |
1.7361 | 2750 | 0.0052 | - |
1.7677 | 2800 | 0.0018 | - |
1.7992 | 2850 | 0.003 | - |
1.8308 | 2900 | 0.004 | - |
1.8624 | 2950 | 0.0006 | - |
1.8939 | 3000 | 0.0058 | - |
1.9255 | 3050 | 0.0004 | - |
1.9571 | 3100 | 0.0028 | - |
1.9886 | 3150 | 0.0005 | - |
2.0202 | 3200 | 0.0006 | - |
2.0518 | 3250 | 0.0016 | - |
2.0833 | 3300 | 0.0036 | - |
2.1149 | 3350 | 0.0009 | - |
2.1465 | 3400 | 0.001 | - |
2.1780 | 3450 | 0.0007 | - |
2.2096 | 3500 | 0.0003 | - |
2.2412 | 3550 | 0.0003 | - |
2.2727 | 3600 | 0.0004 | - |
2.3043 | 3650 | 0.0002 | - |
2.3359 | 3700 | 0.0002 | - |
2.3674 | 3750 | 0.0002 | - |
2.3990 | 3800 | 0.003 | - |
2.4306 | 3850 | 0.0004 | - |
2.4621 | 3900 | 0.0013 | - |
2.4937 | 3950 | 0.0003 | - |
2.5253 | 4000 | 0.0002 | - |
2.5568 | 4050 | 0.0001 | - |
2.5884 | 4100 | 0.0002 | - |
2.6199 | 4150 | 0.0001 | - |
2.6515 | 4200 | 0.0003 | - |
2.6831 | 4250 | 0.0003 | - |
2.7146 | 4300 | 0.0002 | - |
2.7462 | 4350 | 0.0001 | - |
2.7778 | 4400 | 0.0018 | - |
2.8093 | 4450 | 0.0005 | - |
2.8409 | 4500 | 0.0001 | - |
2.8725 | 4550 | 0.0003 | - |
2.9040 | 4600 | 0.0001 | - |
2.9356 | 4650 | 0.0002 | - |
2.9672 | 4700 | 0.0002 | - |
2.9987 | 4750 | 0.0002 | - |
3.0303 | 4800 | 0.0018 | - |
3.0619 | 4850 | 0.0001 | - |
3.0934 | 4900 | 0.0002 | - |
3.125 | 4950 | 0.0001 | - |
3.1566 | 5000 | 0.0002 | - |
3.1881 | 5050 | 0.0004 | - |
3.2197 | 5100 | 0.0001 | - |
3.2513 | 5150 | 0.0001 | - |
3.2828 | 5200 | 0.0002 | - |
3.3144 | 5250 | 0.0003 | - |
3.3460 | 5300 | 0.0001 | - |
3.3775 | 5350 | 0.0003 | - |
3.4091 | 5400 | 0.0001 | - |
3.4407 | 5450 | 0.0001 | - |
3.4722 | 5500 | 0.0001 | - |
3.5038 | 5550 | 0.0003 | - |
3.5354 | 5600 | 0.0002 | - |
3.5669 | 5650 | 0.0001 | - |
3.5985 | 5700 | 0.0005 | - |
3.6301 | 5750 | 0.0003 | - |
3.6616 | 5800 | 0.0001 | - |
3.6932 | 5850 | 0.0003 | - |
3.7247 | 5900 | 0.0001 | - |
3.7563 | 5950 | 0.0001 | - |
3.7879 | 6000 | 0.0001 | - |
3.8194 | 6050 | 0.0006 | - |
3.8510 | 6100 | 0.0002 | - |
3.8826 | 6150 | 0.0004 | - |
3.9141 | 6200 | 0.0001 | - |
3.9457 | 6250 | 0.0001 | - |
3.9773 | 6300 | 0.0001 | - |
4.0088 | 6350 | 0.0002 | - |
4.0404 | 6400 | 0.0001 | - |
4.0720 | 6450 | 0.0 | - |
4.1035 | 6500 | 0.0001 | - |
4.1351 | 6550 | 0.0001 | - |
4.1667 | 6600 | 0.0 | - |
4.1982 | 6650 | 0.0 | - |
4.2298 | 6700 | 0.0 | - |
4.2614 | 6750 | 0.0 | - |
4.2929 | 6800 | 0.0001 | - |
4.3245 | 6850 | 0.0 | - |
4.3561 | 6900 | 0.0 | - |
4.3876 | 6950 | 0.0002 | - |
4.4192 | 7000 | 0.0007 | - |
4.4508 | 7050 | 0.0018 | - |
4.4823 | 7100 | 0.0001 | - |
4.5139 | 7150 | 0.0001 | - |
4.5455 | 7200 | 0.0001 | - |
4.5770 | 7250 | 0.0003 | - |
4.6086 | 7300 | 0.0001 | - |
4.6402 | 7350 | 0.0008 | - |
4.6717 | 7400 | 0.0001 | - |
4.7033 | 7450 | 0.0 | - |
4.7348 | 7500 | 0.0001 | - |
4.7664 | 7550 | 0.0001 | - |
4.7980 | 7600 | 0.0 | - |
4.8295 | 7650 | 0.0 | - |
4.8611 | 7700 | 0.0 | - |
4.8927 | 7750 | 0.0019 | - |
4.9242 | 7800 | 0.0 | - |
4.9558 | 7850 | 0.0 | - |
4.9874 | 7900 | 0.001 | - |
5.0189 | 7950 | 0.0 | - |
5.0505 | 8000 | 0.0011 | - |
5.0821 | 8050 | 0.0002 | - |
5.1136 | 8100 | 0.0004 | - |
5.1452 | 8150 | 0.0 | - |
5.1768 | 8200 | 0.0018 | - |
5.2083 | 8250 | 0.0001 | - |
5.2399 | 8300 | 0.0 | - |
5.2715 | 8350 | 0.0018 | - |
5.3030 | 8400 | 0.0 | - |
5.3346 | 8450 | 0.0005 | - |
5.3662 | 8500 | 0.0001 | - |
5.3977 | 8550 | 0.0 | - |
5.4293 | 8600 | 0.0 | - |
5.4609 | 8650 | 0.0001 | - |
5.4924 | 8700 | 0.0 | - |
5.5240 | 8750 | 0.0001 | - |
5.5556 | 8800 | 0.0 | - |
5.5871 | 8850 | 0.0001 | - |
5.6187 | 8900 | 0.0001 | - |
5.6503 | 8950 | 0.0 | - |
5.6818 | 9000 | 0.0001 | - |
5.7134 | 9050 | 0.0008 | - |
5.7449 | 9100 | 0.0001 | - |
5.7765 | 9150 | 0.0 | - |
5.8081 | 9200 | 0.0008 | - |
5.8396 | 9250 | 0.0001 | - |
5.8712 | 9300 | 0.0 | - |
5.9028 | 9350 | 0.0001 | - |
5.9343 | 9400 | 0.0 | - |
5.9659 | 9450 | 0.0 | - |
5.9975 | 9500 | 0.0001 | - |
6.0290 | 9550 | 0.0 | - |
6.0606 | 9600 | 0.0 | - |
6.0922 | 9650 | 0.0 | - |
6.1237 | 9700 | 0.0 | - |
6.1553 | 9750 | 0.0 | - |
6.1869 | 9800 | 0.0 | - |
6.2184 | 9850 | 0.0 | - |
6.25 | 9900 | 0.0 | - |
6.2816 | 9950 | 0.0 | - |
6.3131 | 10000 | 0.0 | - |
6.3447 | 10050 | 0.0 | - |
6.3763 | 10100 | 0.0 | - |
6.4078 | 10150 | 0.0 | - |
6.4394 | 10200 | 0.0 | - |
6.4710 | 10250 | 0.0 | - |
6.5025 | 10300 | 0.0001 | - |
6.5341 | 10350 | 0.0 | - |
6.5657 | 10400 | 0.0001 | - |
6.5972 | 10450 | 0.0 | - |
6.6288 | 10500 | 0.0 | - |
6.6604 | 10550 | 0.0 | - |
6.6919 | 10600 | 0.0 | - |
6.7235 | 10650 | 0.0 | - |
6.7551 | 10700 | 0.0 | - |
6.7866 | 10750 | 0.0 | - |
6.8182 | 10800 | 0.0 | - |
6.8497 | 10850 | 0.0 | - |
6.8813 | 10900 | 0.0002 | - |
6.9129 | 10950 | 0.0016 | - |
6.9444 | 11000 | 0.0 | - |
6.9760 | 11050 | 0.0002 | - |
7.0076 | 11100 | 0.0 | - |
7.0391 | 11150 | 0.0006 | - |
7.0707 | 11200 | 0.0 | - |
7.1023 | 11250 | 0.0 | - |
7.1338 | 11300 | 0.0 | - |
7.1654 | 11350 | 0.0 | - |
7.1970 | 11400 | 0.0 | - |
7.2285 | 11450 | 0.0 | - |
7.2601 | 11500 | 0.0 | - |
7.2917 | 11550 | 0.0 | - |
7.3232 | 11600 | 0.0 | - |
7.3548 | 11650 | 0.0 | - |
7.3864 | 11700 | 0.0 | - |
7.4179 | 11750 | 0.0 | - |
7.4495 | 11800 | 0.0 | - |
7.4811 | 11850 | 0.0 | - |
7.5126 | 11900 | 0.0 | - |
7.5442 | 11950 | 0.0 | - |
7.5758 | 12000 | 0.0 | - |
7.6073 | 12050 | 0.0 | - |
7.6389 | 12100 | 0.0 | - |
7.6705 | 12150 | 0.0 | - |
7.7020 | 12200 | 0.0 | - |
7.7336 | 12250 | 0.0 | - |
7.7652 | 12300 | 0.0 | - |
7.7967 | 12350 | 0.0003 | - |
7.8283 | 12400 | 0.0001 | - |
7.8598 | 12450 | 0.0 | - |
7.8914 | 12500 | 0.0 | - |
7.9230 | 12550 | 0.0 | - |
7.9545 | 12600 | 0.0 | - |
7.9861 | 12650 | 0.0 | - |
8.0177 | 12700 | 0.0001 | - |
8.0492 | 12750 | 0.0 | - |
8.0808 | 12800 | 0.0 | - |
8.1124 | 12850 | 0.0 | - |
8.1439 | 12900 | 0.0 | - |
8.1755 | 12950 | 0.0 | - |
8.2071 | 13000 | 0.0 | - |
8.2386 | 13050 | 0.0 | - |
8.2702 | 13100 | 0.0 | - |
8.3018 | 13150 | 0.0 | - |
8.3333 | 13200 | 0.0 | - |
8.3649 | 13250 | 0.0 | - |
8.3965 | 13300 | 0.0 | - |
8.4280 | 13350 | 0.0 | - |
8.4596 | 13400 | 0.0 | - |
8.4912 | 13450 | 0.0 | - |
8.5227 | 13500 | 0.0 | - |
8.5543 | 13550 | 0.0 | - |
8.5859 | 13600 | 0.0 | - |
8.6174 | 13650 | 0.0 | - |
8.6490 | 13700 | 0.0021 | - |
8.6806 | 13750 | 0.0006 | - |
8.7121 | 13800 | 0.0002 | - |
8.7437 | 13850 | 0.0013 | - |
8.7753 | 13900 | 0.0 | - |
8.8068 | 13950 | 0.0 | - |
8.8384 | 14000 | 0.0 | - |
8.8699 | 14050 | 0.0 | - |
8.9015 | 14100 | 0.0 | - |
8.9331 | 14150 | 0.0 | - |
8.9646 | 14200 | 0.0 | - |
8.9962 | 14250 | 0.0 | - |
9.0278 | 14300 | 0.0 | - |
9.0593 | 14350 | 0.0 | - |
9.0909 | 14400 | 0.0 | - |
9.1225 | 14450 | 0.0 | - |
9.1540 | 14500 | 0.0 | - |
9.1856 | 14550 | 0.0002 | - |
9.2172 | 14600 | 0.0 | - |
9.2487 | 14650 | 0.0 | - |
9.2803 | 14700 | 0.0 | - |
9.3119 | 14750 | 0.0 | - |
9.3434 | 14800 | 0.0 | - |
9.375 | 14850 | 0.0 | - |
9.4066 | 14900 | 0.0 | - |
9.4381 | 14950 | 0.0 | - |
9.4697 | 15000 | 0.0 | - |
9.5013 | 15050 | 0.0 | - |
9.5328 | 15100 | 0.0 | - |
9.5644 | 15150 | 0.0 | - |
9.5960 | 15200 | 0.0 | - |
9.6275 | 15250 | 0.0 | - |
9.6591 | 15300 | 0.0 | - |
9.6907 | 15350 | 0.0 | - |
9.7222 | 15400 | 0.0002 | - |
9.7538 | 15450 | 0.0 | - |
9.7854 | 15500 | 0.0 | - |
9.8169 | 15550 | 0.0 | - |
9.8485 | 15600 | 0.0 | - |
9.8801 | 15650 | 0.0 | - |
9.9116 | 15700 | 0.0001 | - |
9.9432 | 15750 | 0.0 | - |
9.9747 | 15800 | 0.0003 | - |
10.0063 | 15850 | 0.0 | - |
10.0379 | 15900 | 0.0 | - |
10.0694 | 15950 | 0.0001 | - |
10.1010 | 16000 | 0.0 | - |
10.1326 | 16050 | 0.0 | - |
10.1641 | 16100 | 0.0 | - |
10.1957 | 16150 | 0.0 | - |
10.2273 | 16200 | 0.0 | - |
10.2588 | 16250 | 0.0 | - |
10.2904 | 16300 | 0.0 | - |
10.3220 | 16350 | 0.0 | - |
10.3535 | 16400 | 0.0008 | - |
10.3851 | 16450 | 0.0 | - |
10.4167 | 16500 | 0.0 | - |
10.4482 | 16550 | 0.0 | - |
10.4798 | 16600 | 0.0 | - |
10.5114 | 16650 | 0.0 | - |
10.5429 | 16700 | 0.0 | - |
10.5745 | 16750 | 0.0 | - |
10.6061 | 16800 | 0.0 | - |
10.6376 | 16850 | 0.0 | - |
10.6692 | 16900 | 0.0009 | - |
10.7008 | 16950 | 0.0 | - |
10.7323 | 17000 | 0.0 | - |
10.7639 | 17050 | 0.0 | - |
10.7955 | 17100 | 0.0 | - |
10.8270 | 17150 | 0.0 | - |
10.8586 | 17200 | 0.0 | - |
10.8902 | 17250 | 0.0 | - |
10.9217 | 17300 | 0.0 | - |
10.9533 | 17350 | 0.0 | - |
10.9848 | 17400 | 0.0 | - |
11.0164 | 17450 | 0.0001 | - |
11.0480 | 17500 | 0.0 | - |
11.0795 | 17550 | 0.0 | - |
11.1111 | 17600 | 0.0 | - |
11.1427 | 17650 | 0.0 | - |
11.1742 | 17700 | 0.0 | - |
11.2058 | 17750 | 0.0 | - |
11.2374 | 17800 | 0.0 | - |
11.2689 | 17850 | 0.0 | - |
11.3005 | 17900 | 0.0 | - |
11.3321 | 17950 | 0.0 | - |
11.3636 | 18000 | 0.0 | - |
11.3952 | 18050 | 0.0 | - |
11.4268 | 18100 | 0.0 | - |
11.4583 | 18150 | 0.0 | - |
11.4899 | 18200 | 0.0003 | - |
11.5215 | 18250 | 0.0 | - |
11.5530 | 18300 | 0.0005 | - |
11.5846 | 18350 | 0.0 | - |
11.6162 | 18400 | 0.0 | - |
11.6477 | 18450 | 0.0 | - |
11.6793 | 18500 | 0.0 | - |
11.7109 | 18550 | 0.0 | - |
11.7424 | 18600 | 0.0 | - |
11.7740 | 18650 | 0.0 | - |
11.8056 | 18700 | 0.0 | - |
11.8371 | 18750 | 0.0 | - |
11.8687 | 18800 | 0.0 | - |
11.9003 | 18850 | 0.0 | - |
11.9318 | 18900 | 0.0 | - |
11.9634 | 18950 | 0.0 | - |
11.9949 | 19000 | 0.0 | - |
12.0265 | 19050 | 0.0 | - |
12.0581 | 19100 | 0.0 | - |
12.0896 | 19150 | 0.0 | - |
12.1212 | 19200 | 0.0 | - |
12.1528 | 19250 | 0.0 | - |
12.1843 | 19300 | 0.0 | - |
12.2159 | 19350 | 0.0 | - |
12.2475 | 19400 | 0.0 | - |
12.2790 | 19450 | 0.0 | - |
12.3106 | 19500 | 0.0 | - |
12.3422 | 19550 | 0.0 | - |
12.3737 | 19600 | 0.0 | - |
12.4053 | 19650 | 0.0 | - |
12.4369 | 19700 | 0.0 | - |
12.4684 | 19750 | 0.0 | - |
12.5 | 19800 | 0.0 | - |
12.5316 | 19850 | 0.0 | - |
12.5631 | 19900 | 0.0 | - |
12.5947 | 19950 | 0.0 | - |
12.6263 | 20000 | 0.0 | - |
12.6578 | 20050 | 0.0 | - |
12.6894 | 20100 | 0.0 | - |
12.7210 | 20150 | 0.0 | - |
12.7525 | 20200 | 0.0 | - |
12.7841 | 20250 | 0.0 | - |
12.8157 | 20300 | 0.0 | - |
12.8472 | 20350 | 0.0 | - |
12.8788 | 20400 | 0.0 | - |
12.9104 | 20450 | 0.0 | - |
12.9419 | 20500 | 0.0 | - |
12.9735 | 20550 | 0.0 | - |
13.0051 | 20600 | 0.0 | - |
13.0366 | 20650 | 0.0002 | - |
13.0682 | 20700 | 0.0 | - |
13.0997 | 20750 | 0.0 | - |
13.1313 | 20800 | 0.0 | - |
13.1629 | 20850 | 0.0 | - |
13.1944 | 20900 | 0.0 | - |
13.2260 | 20950 | 0.0 | - |
13.2576 | 21000 | 0.0 | - |
13.2891 | 21050 | 0.0015 | - |
13.3207 | 21100 | 0.0 | - |
13.3523 | 21150 | 0.0 | - |
13.3838 | 21200 | 0.0 | - |
13.4154 | 21250 | 0.0 | - |
13.4470 | 21300 | 0.0 | - |
13.4785 | 21350 | 0.0 | - |
13.5101 | 21400 | 0.0 | - |
13.5417 | 21450 | 0.0 | - |
13.5732 | 21500 | 0.0 | - |
13.6048 | 21550 | 0.0 | - |
13.6364 | 21600 | 0.0 | - |
13.6679 | 21650 | 0.0 | - |
13.6995 | 21700 | 0.0 | - |
13.7311 | 21750 | 0.0 | - |
13.7626 | 21800 | 0.0 | - |
13.7942 | 21850 | 0.0 | - |
13.8258 | 21900 | 0.0 | - |
13.8573 | 21950 | 0.0 | - |
13.8889 | 22000 | 0.0 | - |
13.9205 | 22050 | 0.0 | - |
13.9520 | 22100 | 0.0 | - |
13.9836 | 22150 | 0.0 | - |
14.0152 | 22200 | 0.0 | - |
14.0467 | 22250 | 0.0 | - |
14.0783 | 22300 | 0.0 | - |
14.1098 | 22350 | 0.0 | - |
14.1414 | 22400 | 0.0 | - |
14.1730 | 22450 | 0.0 | - |
14.2045 | 22500 | 0.0002 | - |
14.2361 | 22550 | 0.0 | - |
14.2677 | 22600 | 0.002 | - |
14.2992 | 22650 | 0.0 | - |
14.3308 | 22700 | 0.0 | - |
14.3624 | 22750 | 0.0 | - |
14.3939 | 22800 | 0.0 | - |
14.4255 | 22850 | 0.0 | - |
14.4571 | 22900 | 0.0 | - |
14.4886 | 22950 | 0.0 | - |
14.5202 | 23000 | 0.0 | - |
14.5518 | 23050 | 0.0 | - |
14.5833 | 23100 | 0.0 | - |
14.6149 | 23150 | 0.0 | - |
14.6465 | 23200 | 0.0 | - |
14.6780 | 23250 | 0.0 | - |
14.7096 | 23300 | 0.0 | - |
14.7412 | 23350 | 0.0 | - |
14.7727 | 23400 | 0.0 | - |
14.8043 | 23450 | 0.0 | - |
14.8359 | 23500 | 0.0 | - |
14.8674 | 23550 | 0.0 | - |
14.8990 | 23600 | 0.0 | - |
14.9306 | 23650 | 0.0 | - |
14.9621 | 23700 | 0.0 | - |
14.9937 | 23750 | 0.0 | - |
15.0253 | 23800 | 0.0 | - |
15.0568 | 23850 | 0.0 | - |
15.0884 | 23900 | 0.0 | - |
15.1199 | 23950 | 0.0 | - |
15.1515 | 24000 | 0.0 | - |
15.1831 | 24050 | 0.0 | - |
15.2146 | 24100 | 0.0 | - |
15.2462 | 24150 | 0.0 | - |
15.2778 | 24200 | 0.0 | - |
15.3093 | 24250 | 0.0 | - |
15.3409 | 24300 | 0.0 | - |
15.3725 | 24350 | 0.0 | - |
15.4040 | 24400 | 0.0 | - |
15.4356 | 24450 | 0.0 | - |
15.4672 | 24500 | 0.0 | - |
15.4987 | 24550 | 0.0 | - |
15.5303 | 24600 | 0.0 | - |
15.5619 | 24650 | 0.0 | - |
15.5934 | 24700 | 0.0 | - |
15.625 | 24750 | 0.0 | - |
15.6566 | 24800 | 0.0 | - |
15.6881 | 24850 | 0.0 | - |
15.7197 | 24900 | 0.0 | - |
15.7513 | 24950 | 0.0 | - |
15.7828 | 25000 | 0.0 | - |
15.8144 | 25050 | 0.0 | - |
15.8460 | 25100 | 0.0 | - |
15.8775 | 25150 | 0.0 | - |
15.9091 | 25200 | 0.0 | - |
15.9407 | 25250 | 0.0 | - |
15.9722 | 25300 | 0.0 | - |
16.0038 | 25350 | 0.0 | - |
16.0354 | 25400 | 0.0 | - |
16.0669 | 25450 | 0.0 | - |
16.0985 | 25500 | 0.0 | - |
16.1301 | 25550 | 0.0 | - |
16.1616 | 25600 | 0.0 | - |
16.1932 | 25650 | 0.0 | - |
16.2247 | 25700 | 0.0 | - |
16.2563 | 25750 | 0.0 | - |
16.2879 | 25800 | 0.0 | - |
16.3194 | 25850 | 0.0 | - |
16.3510 | 25900 | 0.0 | - |
16.3826 | 25950 | 0.0 | - |
16.4141 | 26000 | 0.0 | - |
16.4457 | 26050 | 0.0 | - |
16.4773 | 26100 | 0.0 | - |
16.5088 | 26150 | 0.0 | - |
16.5404 | 26200 | 0.0 | - |
16.5720 | 26250 | 0.0 | - |
16.6035 | 26300 | 0.0 | - |
16.6351 | 26350 | 0.0 | - |
16.6667 | 26400 | 0.0 | - |
16.6982 | 26450 | 0.0 | - |
16.7298 | 26500 | 0.0 | - |
16.7614 | 26550 | 0.0 | - |
16.7929 | 26600 | 0.0 | - |
16.8245 | 26650 | 0.0 | - |
16.8561 | 26700 | 0.0 | - |
16.8876 | 26750 | 0.0 | - |
16.9192 | 26800 | 0.0 | - |
16.9508 | 26850 | 0.0 | - |
16.9823 | 26900 | 0.0 | - |
17.0139 | 26950 | 0.0 | - |
17.0455 | 27000 | 0.0 | - |
17.0770 | 27050 | 0.0 | - |
17.1086 | 27100 | 0.0 | - |
17.1402 | 27150 | 0.0 | - |
17.1717 | 27200 | 0.0 | - |
17.2033 | 27250 | 0.0 | - |
17.2348 | 27300 | 0.0 | - |
17.2664 | 27350 | 0.0 | - |
17.2980 | 27400 | 0.0 | - |
17.3295 | 27450 | 0.0 | - |
17.3611 | 27500 | 0.0 | - |
17.3927 | 27550 | 0.0 | - |
17.4242 | 27600 | 0.0 | - |
17.4558 | 27650 | 0.0 | - |
17.4874 | 27700 | 0.0 | - |
17.5189 | 27750 | 0.0 | - |
17.5505 | 27800 | 0.0 | - |
17.5821 | 27850 | 0.0 | - |
17.6136 | 27900 | 0.0 | - |
17.6452 | 27950 | 0.0 | - |
17.6768 | 28000 | 0.0 | - |
17.7083 | 28050 | 0.0 | - |
17.7399 | 28100 | 0.0 | - |
17.7715 | 28150 | 0.0 | - |
17.8030 | 28200 | 0.0 | - |
17.8346 | 28250 | 0.0 | - |
17.8662 | 28300 | 0.0 | - |
17.8977 | 28350 | 0.0 | - |
17.9293 | 28400 | 0.0 | - |
17.9609 | 28450 | 0.0 | - |
17.9924 | 28500 | 0.0 | - |
18.0240 | 28550 | 0.0 | - |
18.0556 | 28600 | 0.0 | - |
18.0871 | 28650 | 0.0 | - |
18.1187 | 28700 | 0.0 | - |
18.1503 | 28750 | 0.0 | - |
18.1818 | 28800 | 0.0 | - |
18.2134 | 28850 | 0.0 | - |
18.2449 | 28900 | 0.0 | - |
18.2765 | 28950 | 0.0 | - |
18.3081 | 29000 | 0.0 | - |
18.3396 | 29050 | 0.0 | - |
18.3712 | 29100 | 0.0 | - |
18.4028 | 29150 | 0.0 | - |
18.4343 | 29200 | 0.0 | - |
18.4659 | 29250 | 0.0 | - |
18.4975 | 29300 | 0.0 | - |
18.5290 | 29350 | 0.0 | - |
18.5606 | 29400 | 0.0 | - |
18.5922 | 29450 | 0.0 | - |
18.6237 | 29500 | 0.0 | - |
18.6553 | 29550 | 0.0 | - |
18.6869 | 29600 | 0.0 | - |
18.7184 | 29650 | 0.0 | - |
18.75 | 29700 | 0.0 | - |
18.7816 | 29750 | 0.0 | - |
18.8131 | 29800 | 0.0 | - |
18.8447 | 29850 | 0.0 | - |
18.8763 | 29900 | 0.0 | - |
18.9078 | 29950 | 0.0 | - |
18.9394 | 30000 | 0.0 | - |
18.9710 | 30050 | 0.0 | - |
19.0025 | 30100 | 0.0 | - |
19.0341 | 30150 | 0.0 | - |
19.0657 | 30200 | 0.0 | - |
19.0972 | 30250 | 0.0 | - |
19.1288 | 30300 | 0.0 | - |
19.1604 | 30350 | 0.0 | - |
19.1919 | 30400 | 0.0 | - |
19.2235 | 30450 | 0.0 | - |
19.2551 | 30500 | 0.0 | - |
19.2866 | 30550 | 0.0 | - |
19.3182 | 30600 | 0.0 | - |
19.3497 | 30650 | 0.0 | - |
19.3813 | 30700 | 0.0 | - |
19.4129 | 30750 | 0.0 | - |
19.4444 | 30800 | 0.0 | - |
19.4760 | 30850 | 0.0 | - |
19.5076 | 30900 | 0.0 | - |
19.5391 | 30950 | 0.0 | - |
19.5707 | 31000 | 0.0 | - |
19.6023 | 31050 | 0.0 | - |
19.6338 | 31100 | 0.0 | - |
19.6654 | 31150 | 0.0 | - |
19.6970 | 31200 | 0.0 | - |
19.7285 | 31250 | 0.0 | - |
19.7601 | 31300 | 0.0 | - |
19.7917 | 31350 | 0.0 | - |
19.8232 | 31400 | 0.0 | - |
19.8548 | 31450 | 0.0 | - |
19.8864 | 31500 | 0.0 | - |
19.9179 | 31550 | 0.0 | - |
19.9495 | 31600 | 0.0 | - |
19.9811 | 31650 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}