File size: 3,383 Bytes
95a9417 6a5815f 95a9417 0cbe99b 95a9417 6a5815f 95a9417 f7ad8ed c799871 fa8c79c b06ecbe fa8c79c 6a5815f c799871 fa8c79c c799871 b06ecbe f7ad8ed 7ebddb4 6a5815f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
language:
- en
datasets:
- pubmed
- ml4pubmed/pubmed-classification-20k
metrics:
- f1
tags:
- text-classification
- document sections
- sentence classification
- document classification
- medical
- health
- biomedical
pipeline_tag: text-classification
widget:
- text: >-
many pathogenic processes and diseases are the result of an erroneous
activation of the complement cascade and a number of inhibitors of
complement have thus been examined for anti-inflammatory actions.
example_title: background example
- text: a total of 192 mi patients and 140 control persons were included.
example_title: methods example
- text: >-
mi patients had 18 % higher plasma levels of map44 (iqr 11-25 %) as compared
to the healthy control group (p < 0. 001.)
example_title: results example
- text: >-
the finding that a brief cb group intervention delivered by real-world
providers significantly reduced mdd onset relative to both brochure control
and bibliotherapy is very encouraging, although effects on continuous
outcome measures were small or nonsignificant and approximately half the
magnitude of those found in efficacy research, potentially because the
present sample reported lower initial depression.
example_title: conclusions example
- text: >-
in order to understand and update the prevalence of myopia in taiwan, a
nationwide survey was performed in 1995.
example_title: objective example
license: apache-2.0
---
# BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pub_section
- original model file name: textclassifer_BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pubmed_20k
- This is a fine-tuned checkpoint of `microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext` for document section text classification
- possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS,
## usage in python
install transformers as needed:
```bash
pip install -U transformers
```
Run the following, changing the example text to your use case:
```python
from transformers import pipeline
model_tag = "ml4pubmed/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pub_section"
classifier = pipeline(
'text-classification',
model=model_tag,
)
prompt = """
Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.
"""
classifier(
prompt,
) # classify the sentence
```
## metadata
### training_metrics
- val_accuracy: 0.8678670525550842
- val_matthewscorrcoef: 0.8222037553787231
- val_f1score: 0.866841197013855
- val_cross_entropy: 0.3674609065055847
- epoch: 8.0
- train_accuracy_step: 0.83984375
- train_matthewscorrcoef_step: 0.7790813446044922
- train_f1score_step: 0.837363600730896
- train_cross_entropy_step: 0.39843088388442993
- train_accuracy_epoch: 0.8538406491279602
- train_matthewscorrcoef_epoch: 0.8031334280967712
- train_f1score_epoch: 0.8521654605865479
- train_cross_entropy_epoch: 0.4116102457046509
- test_accuracy: 0.8578397035598755
- test_matthewscorrcoef: 0.8091378808021545
- test_f1score: 0.8566917181015015
- test_cross_entropy: 0.3963385224342346
- date_run: Apr-22-2022_t-19
- huggingface_tag: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext |