add example output
Browse files
README.md
CHANGED
@@ -95,4 +95,10 @@ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in
|
|
95 |
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
96 |
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
97 |
print(outputs[0]["generated_text"])
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
```
|
|
|
95 |
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
96 |
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
97 |
print(outputs[0]["generated_text"])
|
98 |
+
```
|
99 |
+
|
100 |
+
Output:
|
101 |
+
|
102 |
+
```
|
103 |
+
A Mixture of Experts (MoE) is a neural network architecture that combines the strengths of multiple expert networks to make predictions. It leverages the idea of ensemble learning, where multiple models work together to improve performance. In each MoE, a gating network is used to select the most relevant expert for the input. The final output is a weighted combination of the expert outputs, determined by the gating network's predictions.
|
104 |
```
|