mlabonne commited on
Commit
dec8d83
1 Parent(s): f8a4f80

add example output

Browse files
Files changed (1) hide show
  1. README.md +6 -0
README.md CHANGED
@@ -95,4 +95,10 @@ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in
95
  prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
96
  outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
97
  print(outputs[0]["generated_text"])
 
 
 
 
 
 
98
  ```
 
95
  prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
96
  outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
97
  print(outputs[0]["generated_text"])
98
+ ```
99
+
100
+ Output:
101
+
102
+ ```
103
+ A Mixture of Experts (MoE) is a neural network architecture that combines the strengths of multiple expert networks to make predictions. It leverages the idea of ensemble learning, where multiple models work together to improve performance. In each MoE, a gating network is used to select the most relevant expert for the input. The final output is a weighted combination of the expert outputs, determined by the gating network's predictions.
104
  ```