--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - fblgit/UNA-TheBeagle-7b-v1 - argilla/distilabeled-Marcoro14-7B-slerp - dpo - rlhf --- ![](https://i.imgur.com/89ZAKcn.png) # 🐶 NeuralBeagle14-7B **Update 01/16/24: NeuralBeagle14-7B is (probably) the best 7B model you can find! 🎉** NeuralBeagle14-7B is a DPO fine-tune of [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) using the [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference dataset and my DPO notebook from [this article](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac). Thanks [Argilla](https://huggingface.co/argilla) for providing the dataset and the training recipe [here](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp). 💪 You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralBeagle14-7B-GGUF-Chat) (GGUF Q4_K_M). ## ⚡ Quantized models * **GGUF**: https://huggingface.co/mlabonne/NeuralBeagle14-7B-GGUF ## 🏆 Evaluation ### Open LLM Leaderboard NeuralBeagle14-7B ranks first on the Open LLM Leaderboard in the ~7B category. ![](https://i.imgur.com/4nAzJsr.png) It has the same average score as Beagle14-7B ("Show merges"), which could be due to might be due to an unlucky run. I think I might be overexploiting argilla/distilabel-intel-orca-dpo-pairs at this point, since this dataset or its original version are present in multiple models. I need to find more high-quality preference data for the next DPO merge. Note that some models like udkai/Turdus and nfaheem/Marcoroni-7b-DPO-Merge are unfortunately contaminated on purpose (see the very high Winogrande score). ### Nous The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. It is the best 7B model to date. | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |---|---:|---:|---:|---:|---:| | [**mlabonne/NeuralBeagle14-7B**](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [📄](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | **60.25** | **46.06** | **76.77** | **70.32** | **47.86** | | [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) [📄](https://gist.github.com/mlabonne/f5a5bf8c0827bbec2f05b97cc62d642c) | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 | | [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [📄](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 | | [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp) [📄](https://gist.github.com/mlabonne/9082c4e59f4d3f3543c5eda3f4807040) | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 | | [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) [📄](https://gist.github.com/mlabonne/b31572a4711c945a4827e7242cfc4b9d) | 58.4 | 44.59 | 76.17 | 65.94 | 46.9 | | [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) [📄](https://gist.github.com/mlabonne/1afab87b543b0717ec08722cf086dcc3) | 53.71 | 44.17 | 73.72 | 52.53 | 44.4 | | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 | You can find the complete benchmark on [YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/NeuralBeagle14-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```