--- base_model: mistralai/Mistral-7B-v0.1 tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation - dpo - rlhf model-index: - name: OpenHermes-2-Mistral-7B results: [] license: apache-2.0 language: - en datasets: - mlabonne/chatml_dpo_pairs ---
# NeuralHermes 2.5 - Mistral 7B NeuralHermes is an [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It is directly inspired by the RLHF process described by [neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. I haven't performed a comprehensive evaluation of the model, but it works great, nothing broken apparently! :) The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour. GGUF versions of this model are available here: [mlabonne/NeuralHermes-2.5-Mistral-7B-GGUF](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-GGUF). ## Usage You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend. You can also run this model using the following code: ```python import transformers from transformers import AutoTokenizer # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ## Training hyperparameters **LoRA**: * r=16, * lora_alpha=16, * lora_dropout=0.05, * bias="none", * task_type="CAUSAL_LM", * target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] **Training arguments**: * per_device_train_batch_size=4, * gradient_accumulation_steps=4, * gradient_checkpointing=True, * learning_rate=5e-5, * lr_scheduler_type="cosine", * max_steps=200, * optim="paged_adamw_32bit", * warmup_steps=100, **DPOTrainer**: * beta=0.1, * max_prompt_length=1024, * max_length=1536,