Isaak Carter Augustus commited on
Commit
8a9a613
1 Parent(s): c53b856

8cfb6dc951cf1918d43cf41b29bc9ce2073bd949b81207f5f7328d93e4f36a84

Browse files
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ library_name: mlx
6
+ tags:
7
+ - MiniCPM
8
+ - ModelBest
9
+ - THUNLP
10
+ - mlx
11
+ - mlx
12
+ ---
13
+
14
+ # mlx-community/MiniCPM-2B-dpo-bf16
15
+ This model was converted to MLX format from [`Isaak-Carter/MiniCPM-2B-dpo-bf16-safetensors`]() using mlx-lm version **0.12.1**.
16
+ Refer to the [original model card](https://huggingface.co/Isaak-Carter/MiniCPM-2B-dpo-bf16-safetensors) for more details on the model.
17
+ ## Use with mlx
18
+
19
+ ```bash
20
+ pip install mlx-lm
21
+ ```
22
+
23
+ ```python
24
+ from mlx_lm import load, generate
25
+
26
+ model, tokenizer = load("mlx-community/MiniCPM-2B-dpo-bf16")
27
+ response = generate(model, tokenizer, prompt="hello", verbose=True)
28
+ ```
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MiniCPMForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_minicpm.MiniCPMConfig",
7
+ "AutoModel": "modeling_minicpm.MiniCPMModel",
8
+ "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
9
+ "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
10
+ "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
11
+ },
12
+ "bos_token_id": 1,
13
+ "dim_model_base": 256,
14
+ "eos_token_id": 2,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 2304,
17
+ "initializer_range": 0.1,
18
+ "intermediate_size": 5760,
19
+ "max_position_embeddings": 4096,
20
+ "model_type": "minicpm",
21
+ "num_attention_heads": 36,
22
+ "num_hidden_layers": 40,
23
+ "num_key_value_heads": 36,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "scale_depth": 1.4,
27
+ "scale_emb": 12,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.36.0",
30
+ "use_cache": true,
31
+ "vocab_size": 122753
32
+ }
configuration_minicpm.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ MiniCPM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class MiniCPMConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the MiniCPM-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`MiniCPMModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
65
+ MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ Padding token id.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ Beginning of stream token id.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ End of stream token id.
79
+ pretraining_tp (`int`, *optional*, defaults to 1):
80
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
82
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
+ issue](https://github.com/pytorch/pytorch/issues/76232).
84
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
+ Whether to tie weight embeddings
86
+ rope_theta (`float`, *optional*, defaults to 10000.0):
87
+ The base period of the RoPE embeddings.
88
+ rope_scaling (`Dict`, *optional*):
89
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
+ these scaling strategies behave:
94
+ https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
+ experimental feature, subject to breaking API changes in future versions.
96
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
+ attention_dropout (`float`, *optional*, defaults to 0.0):
99
+ The dropout ratio for the attention probabilities.
100
+
101
+ ```python
102
+ >>> from transformers import MiniCPMModel, MiniCPMConfig
103
+
104
+ >>> # Initializing a MiniCPM minicpm-7b style configuration
105
+ >>> configuration = MiniCPMConfig()
106
+
107
+ >>> # Initializing a model from the minicpm-7b style configuration
108
+ >>> model = MiniCPMModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "minicpm"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=True,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ scale_emb=1,
140
+ dim_model_base=1,
141
+ scale_depth=1,
142
+ **kwargs,
143
+ ):
144
+ self.vocab_size = vocab_size
145
+ self.max_position_embeddings = max_position_embeddings
146
+ self.hidden_size = hidden_size
147
+ self.intermediate_size = intermediate_size
148
+ self.num_hidden_layers = num_hidden_layers
149
+ self.num_attention_heads = num_attention_heads
150
+
151
+ # for backward compatibility
152
+ if num_key_value_heads is None:
153
+ num_key_value_heads = num_attention_heads
154
+
155
+ self.num_key_value_heads = num_key_value_heads
156
+ self.hidden_act = hidden_act
157
+ self.initializer_range = initializer_range
158
+ self.rms_norm_eps = rms_norm_eps
159
+ self.pretraining_tp = pretraining_tp
160
+ self.use_cache = use_cache
161
+ self.rope_theta = rope_theta
162
+ self.rope_scaling = rope_scaling
163
+ self._rope_scaling_validation()
164
+ self.attention_bias = attention_bias
165
+ self.attention_dropout = attention_dropout
166
+ self.scale_emb = scale_emb
167
+ self.dim_model_base = dim_model_base
168
+ self.scale_depth = scale_depth
169
+
170
+ super().__init__(
171
+ pad_token_id=pad_token_id,
172
+ bos_token_id=bos_token_id,
173
+ eos_token_id=eos_token_id,
174
+ tie_word_embeddings=tie_word_embeddings,
175
+ **kwargs,
176
+ )
177
+ try:
178
+ import flash_attn
179
+ self._attn_implementation = "flash_attention_2"
180
+ except:
181
+ pass
182
+
183
+ def _rope_scaling_validation(self):
184
+ """
185
+ Validate the `rope_scaling` configuration.
186
+ """
187
+ if self.rope_scaling is None:
188
+ return
189
+
190
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
191
+ raise ValueError(
192
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
193
+ f"got {self.rope_scaling}"
194
+ )
195
+ rope_scaling_type = self.rope_scaling.get("type", None)
196
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
197
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
198
+ raise ValueError(
199
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
200
+ )
201
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
202
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93d8b4b5449e39b249ab0f00c78f3cb69d2b47da8954a179d595908fc3d08be7
3
+ size 655903609