File size: 11,752 Bytes
96a3b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os

import torch
from safetensors.torch import load_file

from transformers import (
    MixtralConfig,
    MixtralForCausalLM,
)

"""
Sample usage:

```
python src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py \
    --input_dir /path/to/downloaded/mixtral/weights --model_size 7B --output_dir /output/path
```

Thereafter, models can be loaded via:

```py
from transformers import MixtralForCausalLM

model = MixtralForCausalLM.from_pretrained("/output/path")
```

Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""

def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
    return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)

def read_json(path):
    with open(path, "r") as f:
        return json.load(f)

def write_json(text, path):
    with open(path, "w") as f:
        json.dump(text, f)

def write_model(model_path, input_base_path, model_size, safe_serialization=True):
    os.makedirs(model_path, exist_ok=True)

    params = read_json(os.path.join(input_base_path, "params.json"))
    num_shards = 1

    # For some reason this is a string in the params.json
    sliding_window = int(params["sliding_window"]) if "sliding_window" in params else None
    base = params.get("rope_theta", 10000.0)
    vocab_size = params["vocab_size"]

    if model_size == "7B":
        dim = params["hidden_size"]
        max_position_embeddings = 4096 * 8
        num_local_experts = params["num_local_experts"]
        ffn_dim = params["intermediate_size"]
        n_layers = params["num_hidden_layers"]
        n_heads = params["num_attention_heads"]
        n_heads_per_shard = n_heads // num_shards
        dims_per_head = dim // n_heads
        if "num_key_value_heads" in params:
            num_key_value_heads = params["num_key_value_heads"] # for GQA / MQA
            num_local_key_value_heads = num_key_value_heads // num_shards
            key_value_dim = dims_per_head * num_local_key_value_heads
        else: # compatibility with other checkpoints
            num_key_value_heads = n_heads
            num_local_key_value_heads = n_heads_per_shard
            key_value_dim = dim
        rms_norm_eps = params["rms_norm_eps"]
    elif model_size == "22B":
        dim = params["dim"]
        max_position_embeddings = params["max_seq_len"]
        num_local_experts = params["moe"]["num_experts"]
        ffn_dim = params["hidden_dim"]
        n_layers = params["n_layers"]
        n_heads = params["n_heads"]
        n_heads_per_shard = n_heads // num_shards
        dims_per_head = dim // n_heads
        if "n_kv_heads" in params:
            num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
            num_local_key_value_heads = num_key_value_heads // num_shards
            key_value_dim = dims_per_head * num_local_key_value_heads
        else: # compatibility with other checkpoints
            num_key_value_heads = n_heads
            num_local_key_value_heads = n_heads_per_shard
            key_value_dim = dim
        rms_norm_eps = params["norm_eps"]
    else:
        raise Exception("Illegal model size:", model_size)

    # permute for sliced rotary
    def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
        return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)

    print(f"Fetching all parameters from the checkpoint at \"{input_base_path}\"...")
    # Load weights
    if model_size == "7B":
        loaded = [
            torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pt"), map_location="cpu") for i in range(8)
        ]
        merged_state_dict = {}
        for state_dict in loaded:
            merged_state_dict.update(state_dict)
    elif model_size == "22B":
        merged_state_dict = load_file(os.path.join(input_base_path, "consolidated.safetensors"))
    print("Parameters load finished.")

    state_dict = {}
    for layer_i in range(n_layers):
        print(f"At layer {layer_i}...")
        # Sharded
        # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
        # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
        # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.

        state_dict.update(
            {
                f"model.layers.{layer_i}.input_layernorm.weight": merged_state_dict[
                    f"layers.{layer_i}.attention_norm.weight"
                ].clone(),
                f"model.layers.{layer_i}.post_attention_layernorm.weight": merged_state_dict[
                    f"layers.{layer_i}.ffn_norm.weight"
                ].clone(),
            }
        )

        state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
            merged_state_dict[f"layers.{layer_i}.attention.wq.weight"]
            .view(n_heads_per_shard, dims_per_head, dim)
            .reshape(dim, dim)
        )
        state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
            merged_state_dict[f"layers.{layer_i}.attention.wk.weight"]
            .view(num_local_key_value_heads, dims_per_head, dim)
            .reshape(key_value_dim, dim),
            num_key_value_heads,
            key_value_dim,
            dim,
        )
        state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = (
            merged_state_dict[f"layers.{layer_i}.attention.wv.weight"]
            .view(num_local_key_value_heads, dims_per_head, dim)
            .reshape(key_value_dim, dim)
        )

        state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = merged_state_dict[
            f"layers.{layer_i}.attention.wo.weight"
        ]

        if model_size == "7B":
            w1 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w1"]
            w2 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w2"]
            w3 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w3"]

            experts_w1 = [
                w1[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
                for expert_idx in range(num_local_experts)
            ]

            for idx, expert_block in enumerate(experts_w1):
                expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w1"
                state_dict[expert_key + ".weight"] = expert_block.clone()

            experts_w2 = [
                w2[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
                for expert_idx in range(num_local_experts)
            ]

            for idx, expert_block in enumerate(experts_w2):
                expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w2"
                state_dict[expert_key + ".weight"] = expert_block.T.clone().contiguous()

            experts_w3 = [
                w3[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
                for expert_idx in range(num_local_experts)
            ]

            for idx, expert_block in enumerate(experts_w3):
                expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w3"
                state_dict[expert_key + ".weight"] = expert_block.clone()

            state_dict[f"model.layers.{layer_i}.block_sparse_moe.gate.weight"] = merged_state_dict[
                f"layers.{layer_i}.block_sparse_moe.gate.weight"
            ]
        elif model_size == "22B":
            for expert_i in range(num_local_experts):
                w1 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w1.weight"]
                w2 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w2.weight"]
                w3 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w3.weight"]
                state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w1.weight"] = w1.contiguous().clone()
                state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w2.weight"] = w2.contiguous().clone()
                state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w3.weight"] = w3.contiguous().clone()
            state_dict[f"model.layers.{layer_i}.block_sparse_moe.gate.weight"] = merged_state_dict[
                f"layers.{layer_i}.feed_forward.gate.weight"
            ]

    state_dict.update(
        {
            "model.norm.weight": merged_state_dict["norm.weight"],
            "model.embed_tokens.weight": merged_state_dict["tok_embeddings.weight"],
            "lm_head.weight": merged_state_dict["output.weight"],
        }
    )

    config_additional_kwargs = {}
    if model_size == "22B":
        config_additional_kwargs["num_experts_per_tok"] = params["moe"]["num_experts_per_tok"]
    config = MixtralConfig(
        hidden_size=dim,
        intermediate_size=ffn_dim,
        num_attention_heads=n_heads,
        num_hidden_layers=n_layers,
        rms_norm_eps=rms_norm_eps,
        num_key_value_heads=num_key_value_heads,
        vocab_size=vocab_size,
        rope_theta=base,
        max_position_embeddings=max_position_embeddings,
        sliding_window=sliding_window,
        num_local_experts=num_local_experts,
        **config_additional_kwargs
    )

    print("Loading the checkpoint in a Mixtral model.")
    with torch.device("meta"):
        model = MixtralForCausalLM(config)
    # Avoid saving this as part of the config.
    del model.config._name_or_path
    model.config.torch_dtype = torch.bfloat16
    print("Saving in the Transformers format.")

    model.load_state_dict(state_dict, strict=True, assign=True)

    for n, p in model.named_parameters():
        assert p.device.type != "meta", f"{n} has not been loaded!"

    model.save_pretrained(model_path, safe_serialization=safe_serialization)

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input-dir",
        help="Location of Mixtral weights, which contains tokenizer.model and model folders",
        required=True,
    )
    parser.add_argument(
        "--model-size",
        choices=["7B", "22B"],
        help="'f' models correspond to the finetuned versions, and are specific to the Mixtral official release. For more details on Mixtral, checkout the original repo: https://huggingface.co/mistral-ai",
        default="7B",
    )
    parser.add_argument("--output-dir", help="Location to write HF model", required=True)
    parser.add_argument("--safe-serialization", type=bool, default=True, help="Whether or not to save using `safetensors`.")
    args = parser.parse_args()
    write_model(
        model_path=args.output_dir,
        input_base_path=args.input_dir,
        model_size=args.model_size,
        safe_serialization=args.safe_serialization,
    )

if __name__ == "__main__":
    main()