--- base_model: rinna/llama-3-youko-8b-instruct datasets: - CohereForAI/aya_dataset - kunishou/databricks-dolly-15k-ja - kunishou/HelpSteer-35k-ja - kunishou/HelpSteer2-20k-ja - kunishou/hh-rlhf-49k-ja - kunishou/oasst1-chat-44k-ja - kunishou/oasst2-chat-68k-ja - meta-math/MetaMathQA - OpenAssistant/oasst1 - OpenAssistant/oasst2 - sahil2801/CodeAlpaca-20k language: - ja - en license: llama3 tags: - llama - llama-3 - mlx thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png inference: false base_model_relation: merge --- # mlx-community/rinna-llama-3-youko-8b-instruct-4bit The Model [mlx-community/rinna-llama-3-youko-8b-instruct-4bit](https://huggingface.co/mlx-community/rinna-llama-3-youko-8b-instruct-4bit) was converted to MLX format from [rinna/llama-3-youko-8b-instruct](https://huggingface.co/rinna/llama-3-youko-8b-instruct) using mlx-lm version **0.19.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/rinna-llama-3-youko-8b-instruct-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```