File size: 1,420 Bytes
f190e63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
base_model: rinna/llama-3-youko-8b-instruct
datasets:
- CohereForAI/aya_dataset
- kunishou/databricks-dolly-15k-ja
- kunishou/HelpSteer-35k-ja
- kunishou/HelpSteer2-20k-ja
- kunishou/hh-rlhf-49k-ja
- kunishou/oasst1-chat-44k-ja
- kunishou/oasst2-chat-68k-ja
- meta-math/MetaMathQA
- OpenAssistant/oasst1
- OpenAssistant/oasst2
- sahil2801/CodeAlpaca-20k
language:
- ja
- en
license: llama3
tags:
- llama
- llama-3
- mlx
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
inference: false
base_model_relation: merge
---
# mlx-community/rinna-llama-3-youko-8b-instruct-8bit
The Model [mlx-community/rinna-llama-3-youko-8b-instruct-8bit](https://huggingface.co/mlx-community/rinna-llama-3-youko-8b-instruct-8bit) was converted to MLX format from [rinna/llama-3-youko-8b-instruct](https://huggingface.co/rinna/llama-3-youko-8b-instruct) using mlx-lm version **0.19.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/rinna-llama-3-youko-8b-instruct-8bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|