File size: 1,645 Bytes
1da6e99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: bigcode-openrail-m
library_name: transformers
tags:
- code
- mlx
datasets:
- bigcode/the-stack-v2-train
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
model-index:
- name: starcoder2-7b
results:
- task:
type: text-generation
dataset:
name: CruxEval-I
type: cruxeval-i
metrics:
- type: pass@1
value: 34.6
- task:
type: text-generation
dataset:
name: DS-1000
type: ds-1000
metrics:
- type: pass@1
value: 27.8
- task:
type: text-generation
dataset:
name: GSM8K (PAL)
type: gsm8k-pal
metrics:
- type: accuracy
value: 40.4
- task:
type: text-generation
dataset:
name: HumanEval+
type: humanevalplus
metrics:
- type: pass@1
value: 29.9
- task:
type: text-generation
dataset:
name: HumanEval
type: humaneval
metrics:
- type: pass@1
value: 35.4
- task:
type: text-generation
dataset:
name: RepoBench-v1.1
type: repobench-v1.1
metrics:
- type: edit-smiliarity
value: 72.07
---
# mlx-community/starcoder2-7b-4bit
This model was converted to MLX format from [`bigcode/starcoder2-7b`]().
Refer to the [original model card](https://huggingface.co/bigcode/starcoder2-7b) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/starcoder2-7b-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
|