--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-tiny-fi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: fi split: None args: fi metrics: - name: Wer type: wer value: 309.7839418813096 --- # whisper-tiny-fi This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7638 - Wer: 309.7839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.986 | 0.3690 | 100 | 1.5979 | 83.1116 | | 0.755 | 0.7380 | 200 | 0.7632 | 82.2813 | | 0.57 | 1.1070 | 300 | 0.7001 | 75.4128 | | 0.517 | 1.4760 | 400 | 0.6558 | 76.1110 | | 0.4948 | 1.8450 | 500 | 0.6328 | 71.7426 | | 0.3598 | 2.2140 | 600 | 0.6191 | 69.7519 | | 0.3708 | 2.5830 | 700 | 0.6093 | 71.5067 | | 0.3379 | 2.9520 | 800 | 0.5944 | 70.6010 | | 0.2184 | 3.3210 | 900 | 0.5993 | 69.8085 | | 0.2335 | 3.6900 | 1000 | 0.5836 | 69.1197 | | 0.1763 | 4.0590 | 1100 | 0.5925 | 69.6292 | | 0.1648 | 4.4280 | 1200 | 0.5940 | 72.7805 | | 0.1471 | 4.7970 | 1300 | 0.5947 | 74.0542 | | 0.0922 | 5.1661 | 1400 | 0.6138 | 72.4974 | | 0.0989 | 5.5351 | 1500 | 0.6071 | 73.5541 | | 0.095 | 5.9041 | 1600 | 0.6121 | 75.1392 | | 0.0554 | 6.2731 | 1700 | 0.6237 | 76.0732 | | 0.0606 | 6.6421 | 1800 | 0.6240 | 79.8000 | | 0.0544 | 7.0111 | 1900 | 0.6418 | 83.9419 | | 0.0372 | 7.3801 | 2000 | 0.6391 | 91.3105 | | 0.0414 | 7.7491 | 2100 | 0.6471 | 81.3850 | | 0.0223 | 8.1181 | 2200 | 0.6521 | 104.4249 | | 0.0256 | 8.4871 | 2300 | 0.6587 | 104.8684 | | 0.0233 | 8.8561 | 2400 | 0.6669 | 119.1056 | | 0.0159 | 9.2251 | 2500 | 0.6907 | 107.2271 | | 0.0162 | 9.5941 | 2600 | 0.6879 | 140.2585 | | 0.0156 | 9.9631 | 2700 | 0.6933 | 185.6024 | | 0.01 | 10.3321 | 2800 | 0.6958 | 259.4584 | | 0.0099 | 10.7011 | 2900 | 0.7037 | 205.2363 | | 0.0074 | 11.0701 | 3000 | 0.7080 | 246.1836 | | 0.0074 | 11.4391 | 3100 | 0.7141 | 240.3906 | | 0.0074 | 11.8081 | 3200 | 0.7159 | 196.5185 | | 0.0053 | 12.1771 | 3300 | 0.7246 | 216.1242 | | 0.0057 | 12.5461 | 3400 | 0.7310 | 215.3033 | | 0.0056 | 12.9151 | 3500 | 0.7343 | 232.3521 | | 0.0044 | 13.2841 | 3600 | 0.7374 | 234.0976 | | 0.0047 | 13.6531 | 3700 | 0.7420 | 248.5989 | | 0.0046 | 14.0221 | 3800 | 0.7482 | 245.2684 | | 0.0041 | 14.3911 | 3900 | 0.7480 | 270.2236 | | 0.0038 | 14.7601 | 4000 | 0.7481 | 294.0466 | | 0.0037 | 15.1292 | 4100 | 0.7547 | 263.7513 | | 0.0037 | 15.4982 | 4200 | 0.7551 | 280.0359 | | 0.0035 | 15.8672 | 4300 | 0.7568 | 270.1198 | | 0.0032 | 16.2362 | 4400 | 0.7574 | 286.9327 | | 0.0032 | 16.6052 | 4500 | 0.7611 | 286.9516 | | 0.0035 | 16.9742 | 4600 | 0.7618 | 309.7368 | | 0.0032 | 17.3432 | 4700 | 0.7632 | 298.6508 | | 0.0031 | 17.7122 | 4800 | 0.7632 | 304.3778 | | 0.0029 | 18.0812 | 4900 | 0.7637 | 304.8306 | | 0.003 | 18.4502 | 5000 | 0.7638 | 309.7839 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1