--- language: - en license: apache-2.0 base_model: openai/whisper-base.en tags: - generated_from_trainer datasets: - dailytalk metrics: - wer model-index: - name: whisper-base.en-mmb results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: dailytalk type: dailytalk args: 'config: en, split: test' metrics: - name: Wer type: wer value: 10.43014661335272 --- # whisper-base.en-mmb This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the dailytalk dataset. It achieves the following results on the evaluation set: - Loss: 0.1725 - Wer: 10.4301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1555 | 0.93 | 1000 | 0.1675 | 10.6676 | | 0.1267 | 1.87 | 2000 | 0.1613 | 10.3356 | | 0.0876 | 2.8 | 3000 | 0.1662 | 10.4398 | | 0.0544 | 3.74 | 4000 | 0.1725 | 10.4301 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.1+cu121 - Datasets 2.20.0 - Tokenizers 0.15.2