--- license: apache-2.0 base_model: mnoukhov/pythia160m-sft-tldr tags: - trl - reward-trainer - generated_from_trainer metrics: - accuracy model-index: - name: pythia160m-rm-tldr6.9b results: [] --- # pythia160m-rm-tldr6.9b This model is a fine-tuned version of [mnoukhov/pythia160m-sft-tldr](https://huggingface.co/mnoukhov/pythia160m-sft-tldr) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5486 - Accuracy: 0.7121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.2012 | 73 | 0.5667 | 0.6998 | | 0.6204 | 0.4025 | 146 | 0.5560 | 0.7120 | | 0.5593 | 0.6037 | 219 | 0.5532 | 0.7078 | | 0.5593 | 0.8050 | 292 | 0.5486 | 0.7121 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1