File size: 1,789 Bytes
65e52f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: mnoukhov/pythia2.8b-sft-tldr
tags:
- trl
- reward-trainer
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: pythia2.8b-rm-tldr6.9b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pythia2.8b-rm-tldr6.9b
This model is a fine-tuned version of [mnoukhov/pythia2.8b-sft-tldr](https://huggingface.co/mnoukhov/pythia2.8b-sft-tldr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3979
- Accuracy: 0.8129
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5048 | 0.2006 | 291 | 0.4736 | 0.7684 |
| 0.4188 | 0.4011 | 582 | 0.4287 | 0.7951 |
| 0.3628 | 0.6017 | 873 | 0.4141 | 0.8028 |
| 0.3203 | 0.8022 | 1164 | 0.3979 | 0.8129 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|