File size: 2,882 Bytes
d97c17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-cordv2-binary
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-cordv2-binary

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0490
- Precision: 0.9529
- Recall: 0.9564
- F1: 0.9546
- Accuracy: 0.9941

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1500

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.3333 | 100  | 0.0970          | 0.7517    | 0.8145 | 0.7818 | 0.9788   |
| No log        | 0.6667 | 200  | 0.0520          | 0.8715    | 0.9127 | 0.8917 | 0.9894   |
| No log        | 1.0    | 300  | 0.0630          | 0.9143    | 0.9309 | 0.9225 | 0.9919   |
| No log        | 1.3333 | 400  | 0.0459          | 0.925     | 0.9418 | 0.9333 | 0.9936   |
| 0.0764        | 1.6667 | 500  | 0.0540          | 0.9457    | 0.9491 | 0.9474 | 0.9936   |
| 0.0764        | 2.0    | 600  | 0.0395          | 0.9393    | 0.9564 | 0.9477 | 0.9945   |
| 0.0764        | 2.3333 | 700  | 0.0455          | 0.9457    | 0.9491 | 0.9474 | 0.9945   |
| 0.0764        | 2.6667 | 800  | 0.0490          | 0.9562    | 0.9527 | 0.9545 | 0.9941   |
| 0.0764        | 3.0    | 900  | 0.0422          | 0.9395    | 0.96   | 0.9496 | 0.9958   |
| 0.02          | 3.3333 | 1000 | 0.0524          | 0.9529    | 0.9564 | 0.9546 | 0.9941   |
| 0.02          | 3.6667 | 1100 | 0.0466          | 0.9529    | 0.9564 | 0.9546 | 0.9941   |
| 0.02          | 4.0    | 1200 | 0.0482          | 0.9568    | 0.9673 | 0.9620 | 0.9953   |
| 0.02          | 4.3333 | 1300 | 0.0444          | 0.9529    | 0.9564 | 0.9546 | 0.9941   |
| 0.02          | 4.6667 | 1400 | 0.0493          | 0.9529    | 0.9564 | 0.9546 | 0.9941   |
| 0.0103        | 5.0    | 1500 | 0.0490          | 0.9529    | 0.9564 | 0.9546 | 0.9941   |


### Framework versions

- Transformers 4.43.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1